

HABITATS REGULATIONS ASSESSMENT - VOLUME 3 APPENDIX 3

Screening Matrices

Drax Bioenergy with Carbon Capture and Storage

The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations, 2009 - Regulation 5(2)(g)

Document Reference Number: 6.8.3.3

Applicant: Drax Power Limited **PINS Reference:** EN010120

REVISION: 01

DATE: May 2022

DOCUMENT OWNER: WSP UK Limited

AUTHOR: L. Richards

APPROVER: P. Peterson

PUBLIC

Planning Inspectorate
Advice Note 10
Habitats Regulations Assessment

Screening Matrices

Potential Effects

Potential effects upon the European site(s)* which are considered within the submitted HRA report (document reference 6.8.1) are provided in the table below.

Effects considered within the screening matrices

Designation	Effects described in submission information	Presented in screening matrices as
_	Loss or disturbance of habitats within European Sites	Loss or disturbance of habitats within European Sites
	Loss or physical disturbance of functionally-linked land	Loss or mechanical disturbance of functionally-linked land
	Emissions of dust	Emissions of dust
River Derwent SAC	Increased risk of pollution from increased sediment load	Increased risk of pollution from sediment load
River Derweilt SAC	Accidental releases of water-borne pollutants	Accidental releases of water-borne pollutants
	Disturbance from noise and vibration;	Noise disturbance
	Operational noise disturbance of European Site qualifying features	
	Increased visual disturbance from plant and personnel;	Visual disturbance
	Increased levels of visual disturbance during operation	
	Emissions of treated flue gas to air	Emissions of treated flue gas to air

^{*} As defined in Advice Note 10.

Lower Derwent Valley SAC	Loss or disturbance of habitats within European Sites	Loss or disturbance of habitats within European Sites
	Loss or physical disturbance of functionally-linked land	Loss or mechanical disturbance of functionally-linked land
	Emissions of dust	Emissions of dust
	Increased risk of pollution from increased sediment load	Increased risk of pollution from sediment load
	Accidental releases of water-borne pollutants	Accidental releases of water-borne pollutants
	Disturbance from noise and vibration;	Noise disturbance
	Operational noise disturbance of European Site qualifying features	
	Increased visual disturbance from plant and personnel;	Visual disturbance
	Increased levels of visual disturbance during operation	
	Emissions of treated flue gas to air	Emissions of treated flue gas to air
Lower Derwent Valley SPA	Loss or disturbance of habitats within European Sites	Loss or disturbance of habitats within European Sites
	Loss or physical disturbance of functionally-linked land	Loss or mechanical disturbance of functionally-linked land
	Emissions of dust	Emissions of dust
	Increased risk of pollution from increased sediment load	Increased risk of pollution from sediment load
	Accidental releases of water-borne pollutants	Accidental releases of water-borne pollutants
	Disturbance from noise and vibration;	Noise disturbance
	Operational noise disturbance of European Site qualifying features	
	Increased visual disturbance from plant and personnel;	Visual disturbance
	Increased levels of visual disturbance during operation	
	Emissions of treated flue gas to air	Emissions of treated flue gas to air
Lower Derwent Valley Ramsar	Loss or disturbance of habitats within European Sites	Loss or disturbance of habitats within European Sites
	Loss or physical disturbance of functionally-linked land	Loss or mechanical disturbance of functionally-linked land
	Emissions of dust	Emissions of dust
	Increased risk of pollution from increased sediment load	Increased risk of pollution from sediment load
	Accidental releases of water-borne pollutants	Accidental releases of water-borne pollutants
	Disturbance from noise and vibration;	Noise disturbance
	Operational noise disturbance of European Site qualifying features	
	Increased visual disturbance from plant and personnel; Increased levels of visual disturbance during operation	Visual disturbance
	Emissions of treated flue gas to air	Emissions of treated flue gas to air
Skipwith Common SAC	Loss or disturbance of habitats within European Sites	Loss or disturbance of habitats within European Sites
	Loss or physical disturbance of functionally-linked land	Loss or mechanical disturbance of functionally-linked land
	Emissions of dust	Emissions of dust
	Increased risk of pollution from increased sediment load	Increased risk of pollution from sediment load
	Accidental releases of water-borne pollutants	Accidental releases of water-borne pollutants
	Disturbance from noise and vibration;	Noise disturbance
	Operational noise disturbance of European Site qualifying features	
	Increased visual disturbance from plant and personnel;	Visual disturbance
	Increased levels of visual disturbance during operation	
	Emissions of treated flue gas to air	Emissions of treated flue gas to air
Thorne Moor SAC	Loss or disturbance of habitats within European Sites	Loss or disturbance of habitats within European Sites

!		
	Loss or physical disturbance of functionally-linked land	Loss or mechanical disturbance of functionally-linked land
,	Emissions of dust	Emissions of dust
ļ	Increased risk of pollution from increased sediment load	Increased risk of pollution from sediment load
,	Accidental releases of water-borne pollutants	Accidental releases of water-borne pollutants
,	Disturbance from noise and vibration;	Noise disturbance
1	Operational noise disturbance of European Site qualifying features	
,	Increased visual disturbance from plant and personnel;	Visual disturbance
1	Increased levels of visual disturbance during operation	
ļ	Emissions of treated flue gas to air	Emissions of treated flue gas to air
Thorne and Hatfield Moors SPA	Loss or disturbance of habitats within European Sites	Loss or disturbance of habitats within European Sites
	Loss or physical disturbance of functionally-linked land	Loss or mechanical disturbance of functionally-linked land
ł	Emissions of dust	Emissions of dust
1	Increased risk of pollution from increased sediment load	Increased risk of pollution from sediment load
ļ	Accidental releases of water-borne pollutants	Accidental releases of water-borne pollutants
,	Disturbance from noise and vibration;	Noise disturbance
1	Operational noise disturbance of European Site qualifying features	
ļ	Increased visual disturbance from plant and personnel;	Visual disturbance
1	Increased levels of visual disturbance during operation	
Ţ	Emissions of treated flue gas to air	Emissions of treated flue gas to air
Humber Estuary SAC	Loss or disturbance of habitats within European Sites	Loss or disturbance of habitats within European Sites
	Loss or physical disturbance of functionally-linked land	Loss or mechanical disturbance of functionally-linked land
,	Emissions of dust	Emissions of dust
ţ	Increased risk of pollution from increased sediment load	Increased risk of pollution from sediment load
ļ	Accidental releases of water-borne pollutants	Accidental releases of water-borne pollutants
ļ	Disturbance from noise and vibration;	Noise disturbance
1	Operational noise disturbance of European Site qualifying features	
ļ	Increased visual disturbance from plant and personnel;	Visual disturbance
1	Increased levels of visual disturbance during operation	
Ţ	Emissions of treated flue gas to air	Emissions of treated flue gas to air
Humber Estuary SPA	Loss or disturbance of habitats within European Sites	Loss or disturbance of habitats within European Sites
	Loss or physical disturbance of functionally-linked land	Loss or mechanical disturbance of functionally-linked land
}	Emissions of dust	Emissions of dust
,	Increased risk of pollution from increased sediment load	Increased risk of pollution from sediment load
ļ	Accidental releases of water-borne pollutants	Accidental releases of water-borne pollutants
,	Disturbance from noise and vibration;	Noise disturbance
	Operational noise disturbance of European Site qualifying features	
,	Increased visual disturbance from plant and personnel;	Visual disturbance
	Increased levels of visual disturbance during operation	
,	Emissions of treated flue gas to air	Emissions of treated flue gas to air
Humber Estuary Ramsar	Loss or disturbance of habitats within European Sites	Loss or disturbance of habitats within European Sites

Loss or physical disturbance of functionally-linked land	Loss or mechanical disturbance of functionally-linked land
Emissions of dust	Emissions of dust
Increased risk of pollution from increased sediment load	Increased risk of pollution from sediment load
Accidental releases of water-borne pollutants	Accidental releases of water-borne pollutants
Disturbance from noise and vibration;	Noise disturbance
Operational noise disturbance of European Site qualifying features	
Increased visual disturbance from plant and personnel;	Visual disturbance
Increased levels of visual disturbance during operation	
Emissions of treated flue gas to air	Emissions of treated flue gas to air

STAGE 1: SCREENING MATRICES

The European sites included within the screening assessment are:

- River Derwent SAC;
- Lower Derwent Valley SAC;
- Lower Derwent Valley SPA;
- Lower Derwent Valley Ramsar;
- Skipwith Common SAC;
- Thorne Moor SAC;
- Thorne and Hatfield Moors SPA;
- Humber Estuary SAC;
- Humber Estuary SPA; and
- Humber Estuary Ramsar.

Evidence for, or against, likely significant effects on the European site(s) and its qualifying feature(s) is detailed within the footnotes to the screening matrices below.

Matrix Key:

- ✓ = Likely significant effect cannot be excluded
- **x** = Likely significant effect **can** be excluded

C = construction

O = operation

D = decommissioning

HRA Screening Matrix 1: River Derwent SAC

EU Code: UK00 Distance to NS																											
European site features		.,										Likely	effect	s of N	SIP												
Effect	hat	Loss (turbar pitats (ropear	nce of within	m dist		of waterborne pollution from disturbance disturbance treated flue gas effect pance of ally linked and														mbina ffects	ion						
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Water courses of plain to montane levels with the Ranunculion fluitantis and Callitricho-Batrachion vegetation	ха		Xa	xd		xd	xd		xd	xf	xf	Xf	xf	xf	xf								xk		хI	хm	хI
river lamprey Lampetra fluviatilis	Xb		Хb	xd		xd	xd		xd	√g	√g	√g	xn	хn	хn	хо	хо	хо	xh	хj	xh		xk		хI	√m	хI
sea lamprey Petromyzon marinus	Xb		Xb	xd		xd	xd		xd	√g	√g	√g	хn	xn	xn	хо	хо	хо	xh	хj	xh		xk		хI	xm	хI
bullhead <i>Cottus</i> gobio	Xb		Xb	xd		xd	xd		xd	Xf	xf	xf	xf	xf	xf	хо	хо	хо	xh	хj	xh		xk		хI	√m	хI
otter <i>Lutra</i> <i>lutra</i>	хb		Xb	√c		√c	√e		√e	√g	√g	√g	√g	√g	√g	хо	хо	хо	√i	хj	√i		xk		хI	√m	хI

Evidence supporting conclusions:

- a. The Proposed Scheme is located 0.7 km from the closest European Site, which is the River Derwent SAC. There would therefore no loss of habitats within any European Site arising from construction or decommissioning of the Proposed Scheme (Paragraph 3.5.2. of the HRA Report).
- **b.** There would be no loss or disturbance of habitats within any European Site supporting qualifying interest species (paragraph 3.5.2 of the HRA Report).
- Carr Dyke is located immediately north of Drax Power Station. Previous survey work for the Drax Repower Scheme recorded evidence of otters along Carr Dyke and adjacent to the River Ouse (WSP, 2018). Carr Dyke is within 50m of the Habitat Provision Area, where hedgerow planting is proposed as well as being adjacent to the Woodyard which would be used for construction laydown and fabrication (see paragraph 2.3.9 of Chapter 2 (Site and Project Description) of Volume 1 of the ES (document reference 6.1.2). As such, otters are expected to be present that could form part of the qualifying interests, and could be affected by loss or disturbance of functionally-linked land. As such, it is not possible to rule out LSE without more detailed consideration.

- **d.** Qualifying interest feature is not expected to be present within land within the Order Limits or within 50 m of construction activities, due to absence of habitat or physical barriers to dispersal. As such there is no prospect of loss or mechanical disturbance of functionally-linked land or for impacts from dust (see **Table 3.3** in the **Habitats Regulations Assessment Report**, document reference 6.8.1).
- e. As set out in **paragraph 6.8.3** of **Chapter 6** (Air Quality) of Volume 1 of the ES (document reference 6.1.6), emissions of dust from construction activities could be relevant to ecological receptors up to 50 m from construction activities. Dust deposition onto the Habitat Provision Area and Carr Dyke within 50m of the woodyard (see **Figure 3** of the **HRA Report**, document reference 6.8.2.3) could have minor adverse effects on the habitats present. Dust deposition onto aquatic and terrestrial habitats can lead to soiling of plant surfaces, affecting photosynthesis and ecological functioning, which could reduce the suitability of the watercourses for foraging otter. Construction and decommissioning activities would last for more than a year and qualifying interest features may occasionally use habitats within 50 m of these activities. As such, there is the potential for LSE on these features due to dust emissions.
- These qualifying interests of the SAC do not occur in watercourses that could be affected by water-borne pollution. Carr Dyke does not support the 'Water courses of plain to montane levels with the *Ranunculion fluitantis and Callitricho-Batrachion* vegetation' qualifying interest. This habitat type does not tolerate saline or brackish water, so will not be found in the River Ouse adjacent or downstream of the Proposed Scheme. In relation to bullhead, this fish is associated with freshwater habitats and will also not be found in the River Ouse adjacent or downstream of the Proposed Scheme, again due to the tidal nature of the River Ouse. In the event that Carr Dyke supported bullhead, any populations present would be functionally-isolated from the River Derwent by the River Ouse (there is also pumping station infrastructure at the confluence of Carr Dyke with the River Ouse, which is likely to present a barrier to fish movement) see **paragraph 3.5.14 and Table 3.4** of the **HRA Report**, document reference 6.8.1).
- g. As set out between paragraph 12.9.3 and 12.9.6 of Chapter 12 (Water Environment) in Volume 1 of the ES (document reference 6.1.12), in the absence of mitigation Carr Dyke and River Ouse may be at risk of increased sediment loading during construction and decommissioning, and of increased risk of water-borne pollutants (hydrocarbons etc) during construction, decommissioning, and operation. These impacts could temporarily reduce the suitability of this for foraging otter. In the event of an accidental release of water-borne pollutants into Carr Dyke or River Ouse, this could temporarily reduce the suitability of these watercourses for foraging otter. Sea lamprey and river lamprey using the River Ouse are also likely to be part of the qualifying interest populations for which the River Derwent SAC has been designated and could be affected (see paragraph 3.6.22 of the HRA Report (document reference 6.8.1). As such, there is a potential for LSE on these features due to accidental release of waterborne pollutants and / or sediment loading.
- **h.** Bullhead, river lamprey and sea lamprey that form part of the qualifying interest populations are not expected to be present within the ZoI of visual disturbance, and are also not considered to be sensitive to visual disturbance (see **Table 3.5** of the **HRA Report** (document reference 6.8.1)). As such, no LSE are predicted.
- i. Otter are known to use the Carr Dyke adjacent to the northern part of the Drax Power Station Site, where construction and laydown activities would occur. It is possible that these activities, including construction of the Carbon Dioxide Delivery Compound, could lead to visual disturbance of otter, through presence of construction personnel and machinery. As such, the potential for LSE has been identified (see **Table 3.5** in the **HRA Report**, document reference 6.8.1).
- j. Operational activities with potential to disturb qualifying interests of the River Derwent SAC include the presence of additional personnel within the Power Station site, potential requirements for operational lighting, and habitat management in the Habitat Provision Area and Off-Site Habitat Provision Area. These activities are considered to have very limited scope to lead to significant disturbance of European Site qualifying interests, due to being confined to within the Drax Power Station Site and/or due to being equivalent to ongoing agricultural activities. This is analysed in detail between paragraphs 3.6.11 to 3.6.19 of the HRA Report (document reference 6.8.1). As such, no LSE are predicted to arise.
- k. The air quality dispersion modelling results (see **Section 6.9** of **Chapter 2** (Air Quality) of Volume 1 of the ES (document reference 6.1.6) show that the PC from the Proposed Scheme is ≤1% of the critical level for all European Sites for NOx, NH₃, and SO₂, with no exceedance of the Critical Level with or without the Proposed Scheme. Therefore, the Proposed Scheme alone will not result in LSE to any European Site in relation to these pollutants. The River Derwent SAC is not considered to be sensitive to doses of nitrogen deposition or acid deposition such as would arise from the Proposed Scheme (see **Appendix 5 and 6** of the **HRA Report**, document reference 6.8.3.5 and 6.8.3.6). As such, no LSE are predicted to arise.
- In-combination LSE have been identified for Development 3 and Development 6 during construction and decommissioning of the Proposed Scheme. Development 3 involves permanent land take within the ZoI of the Proposed Scheme for a Convertor Station. The development involves the installation of a cable crossing of the River Ouse downstream of the Proposed Scheme under the River Ouse by Horizontal Directional Drilling (HDD) or similar. The cable may also be installed across smaller watercourses and other land by open-cut techniques. Installation of the cable could therefore also lead to short-term temporary loss of functionally linked habitat that may be used by otter (**Table 3.8** of the **HRA Report**, document reference 6.8.1), and increased risk of accidental release of water-borne pollutants within watercourses including the River Ouse that may be used by otter, sea lamprey and river lamprey (**Table 3.11** of the **HRA Report**); these species are likely to form part of the River Derwent SAC population. In addition, there is potential for in-combination visual disturbance impacts between Development 6 and the Proposed Scheme to be worse than those of either project alone. LSE are therefore also identified in relation to visual disturbance (see **Table 3.13** of the **HRA Report** (document reference 6.8.1).
- m. In-combination LSE have been identified for Development 3 and 12 during operation. The risk relates to increased potential for adverse cumulative effects in relation to increased pollutants released by accidental spillage and leakage of oil, hydrocarbons and hazardous substances. These could impact the quality of the local drains and potentially the River Ouse (functionally-linked land used by otter, river lamprey, and sea lamprey). This could lead to increased impacts relative to operation of the Proposed Scheme alone (see **Table 3.17** of the **HRA Report** (document reference 6.8.1). No impacts to SAC habitats or bullhead are predicted, as these will not occur in the River Ouse or downstream of where cumulative impacts could occur, due to the tidal nature of the River Ouse in this location. This is because SAC habitats and bullhead are intolerant of the brackish or saline conditions in this part of the Ouse.
- n. Sediment loading has been identified as a risk to water quality of the Carr Dyke during construction (see paragraph 12.9.3 and 12.9.6 of Chapter 12 (Water Environment) in Volume 1 of the ES (document reference 6.1.12). The River Ouse is not expected to be affected, due to the distance between the Proposed Scheme and the Ouse. River and sea lamprey are not expected to use the Carr Dyke due to the barrier posed by pumping station infrastructure (see Table 3.4 in the HRA Report (document reference 6.8.1). As such, no LSE are predicted.

o. River and sea lamprey are not expected to use the Carr Dyke due to the barrier posed by pumping station infrastructure and any bullhead populations in the Carr Dyke would not be functionally-linked with the River Derwent populations due to the intervening barriers (pumping station infrastructure and tidal nature of Ouse) (see **Table 3.4** in the **HRA Report** (document reference 6.8.1). Otters may use the Carr Dyke, adjacent to the Proposed Scheme. The assessment of noise and vibration presented in the ES considered several Biodiversity Receptors. The locations of these are shown on **Figure 7.2** of **Chapter 7** (Noise and Vibration) of the ES (document reference 6.2.7.2). The results of the construction and operational noise modelling for Biodiversity Receptors are set out in **Table 1** of **Appendix 7.6** (Biodiversity Receptors) of **Chapter 7** (Noise and Vibration) of the ES (document reference 6.3.7.6). The noise levels that would occur during construction are relatively low, and often do not exceed baseline conditions (see Table 3.4 of the HRA Report (document reference 6.8.1). These noise levels are not predicted to lead to any significant change in the behaviour of otters using Carr Dyke. Operational noise generated by the Proposed Scheme would be lower than that produced during construction (see **Table 1** of **Appendix 7.6** (Biodiversity Receptors) of **Chapter 7** (Noise and Vibration) of the ES (document reference 6.3.7.6). As such, no LSE are predicted.

HRA Screening Matrix 2: Lower Derwent Valley SAC

Name of Europe		c and t	csigila		LOWEI DO	CI WEI	vane	Ly JAC	<i>-</i>																		
EU Code: UK001																											
Distance to NS	[P: 4.3	km																									
European site features												Lik	ely eff	ects o	f NSIF	•											
Effect		or distu of habita		dis	s or phys sturbance tionally li land	e of	Emis	sion of	dust	rele wat	cidenta eases c erborn llutants	of ie	pollu	ased ri ution fr ment l	rom	l .	Noise turba		di	Visual sturbar			nissions ed flue air	s of gas to	In	combinat effects	ion
Stage of Development	С	0	D	С	0	D	С	0	D	Ċ	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Lowland hay meadows (Alopecurus parentsis, Sanguisorba officinalis)	×a		×a	×b		×b	×d		×d	×g	×g	×g	×g		×g								√m			√n	
Alluvial forests with Alnus glutinosa and Fraxinus excelsior (Alno- Padion, Alnion incanae, Salicion albae)	×a		×a	×b		×b	×d		×d	×g	×g	×g	×g		×g								√m			√n	
Otter <i>Lutra</i> <i>Lutra</i>	×a		×a	√c		√c	√e		√e	√f	√f	√f	√h		√h	хi	хj	хi	√k	×I	√k		√m		√o	√n	√o

Evidence supporting conclusions:

- a. There would therefore be no loss of habitats within any European Site arising from construction or decommissioning (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 3 of the ES (document reference 6.2.8.3)).
- b. There are no Annex 1 qualifying interest habitat types within or adjacent to the Proposed Scheme (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 2 of the ES (document reference 6.2.8.3)). There is therefore no potential for loss of functionally-linked SAC habitats.
- Carr Dyke is located immediately north of Drax Power Station. Previous survey work for the Drax Repower Scheme recorded evidence of otters along Carr Dyke and adjacent to the River Ouse (see Table 3.3 of the HRA Report). Carr Dyke is within 50m of the Habitat Provision Area, where hedgerow planting is proposed as well as being adjacent to the Woodyard which would be used for construction laydown and fabrication (see **paragraph 2.3.9** of **Chapter 2** (Site and Project Description) of Volume 1 of the ES (document reference 6.1.2). As such, otters are expected to be present that could form part of the qualifying interest, and could be affected by loss or disturbance of functionally-linked land. As such, it is not possible to rule out LSE without more detailed consideration.
- **d.** There are no Annex 1 qualifying interest habitat types within 50 m of the Proposed Scheme (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 2 of the ES (document reference 6.2.8.3)). There is therefore no potential for dust deposition onto functionally-linked SAC habitats and LSE are not predicted to arise.
- e. As set out in **paragraph 6.8.2** of **Chapter 6** (Air Quality) of Volume 1 of the ES (document reference 6.1.6), emissions of dust from construction activities could be relevant to ecological receptors up to 50 m from construction activities. Dust deposition onto the Habitat Provision Area and Carr Dyke within 50m of the woodyard (see **Figure 3** of the **HRA Report**, document reference 6.8.2.3) could have minor adverse effects on the habitats present. Dust deposition onto aquatic and terrestrial habitats can lead to soiling of plant surfaces, affecting

- photosynthesis and ecological functioning, which could reduce the suitability of the watercourses for foraging otter. Construction and decommissioning activities would last for more than a year and qualifying interest features may occasionally use habitats within 50 m of these activities. As such, there is the potential for LSE on these features due to dust emissions.
- As set out between **paragraph 12.9.9** and **12.9.11** of **Chapter 12** (Water Environment) in Volume 1 of the ES (document reference 6.1.12), in the absence of mitigation Carr Dyke may be at increased risk of pollution from accidental spillages of oils, hydrocarbons, and hazardous substances during construction, operation, and decommissioning. **Paragraph 12.9.15** of Chapter 12 (**Water Environment**) also identifies that River Ouse, approximately 1.4 km downstream of option 1 of the Carbon Dioxide Delivery Terminal Compound, is at risk of such pollution events. In the event of an accidental release of water-borne pollutants into Carr Dyke or River Ouse, this could temporarily reduce the suitability of these watercourses for foraging otter. In the event of a significant spill vegetation and fish populations could be impacted, reducing the suitability of the watercourse for foraging otter in the short to medium term (see **paragraphs 3.5.12 3.5.16** of the **HRA Report** (document reference 6.8.1)). As such, LSE are predicted.
- g. There are no Annex 1 qualifying interest habitat types within or adjacent to the Proposed Scheme and they do not occur along the tidal River Ouse downstream of the Site as the tidal conditions mean the banks of the river are unsuitable (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 2 of the ES (document reference 6.2.8.3)). As such, no LSE are predicted.
- h. Increased sediment loading of the Carr Dyke during construction and decommissioning could temporarily reduce the suitability of this for foraging otter (see **paragraph 3.5.12** of the **HRA Report** (document reference 6.8.1)). Any otters using the Carr Dyke may also be part of the qualifying interest populations of Lower Derwent Valley SAC. As such, LSE are predicted to arise.
- i. Given the low level of predicted noise at Biodiversity Receptors, construction and decommissioning noise is not likely to lead to any changes in behaviour by otters, in the event they were using the Carr Dyke or other habitats within or adjacent to the Habitat Provision Area. The closest Biodiversity Receptors to the Carr Dyke (BR 2 BR6) are predicted to experience maximum noise levels of 39 LAeq,T dB (see **Appendix 7.6** (**Biodiversity Receptors**) of **Chapter 7** (Noise and Vibration) of the ES (document reference 6.3.7.6)) and **Table 3.4** of the **HRA Report** (document reference 6.8.1).
- j. The maximum noise level at any Biodiversity Receptor considered to provide functionally linked habitat (Biodiversity Receptor 5) is 28 LAeq,T dB (see **Appendix 7.6** (**Biodiversity Receptors**) of **Chapter 7** (Noise and Vibration) of the ES (document reference 6.3.7.6)). Additional detail is presented in **paragraphs 3.6.6 to 3.6.7** of the **HRA Report** (document reference 6.8.1). Given the very low levels of noise that would arise from operation of the Carbon Capture Plant, no disturbance of any European Site qualifying interests is predicted to arise.
- k. Otters that form part of the Lower Derwent Valley SAC population may also use habitats outside the SAC, potentially including Carr Dyke adjacent to the Proposed Scheme. Otters may be discouraged from using areas of the Carr Dyke in proximity to construction activities in this area as a result of visual disturbance from plant and personnel. As such, there are potential LSE to the otter qualifying feature arising from works in the Woodyard area (see **Table 3.5** in the **HRA Report** (document reference 6.8.1).
- I. Operational activities with potential to disturb qualifying interests of the Lower Derwent Valley SAC include the presence of additional personnel within the Power Station site, potential requirements for operational lighting, and habitat management in the Habitat Provision Area and Off-Site Habitat Provision Area. These activities are considered to have very limited scope to lead to significant disturbance of European Site qualifying interests, due to being confined to within the Drax Power Station Site and/or due to being equivalent to ongoing agricultural activities. This is analysed in detail between **paragraphs 3.6.11 to 3.6.19** of the **HRA Report** (document reference 6.8.1). As such, no LSE are predicted to arise.
- m. Potential LSE have been identified in relation to acid deposition for Lower Derwent Valley SAC. The modelled PC in the with Proposed Scheme scenario for acid deposition is above 1% of the respective critical load at sensitive habitats within the Lower Derwent Valley SAC (2.0%) (see **Section 6.9** of Chapter 6 (Air Quality), document reference 6.1.6). The modelled PC from the Proposed Scheme therefore exceeds the 1% screening criterion and potential LSE cannot be ruled out and require further analysis (see **paragraphs 3.6.3 to 3.6.5** of the **HRA Report** (document reference 6.8.1).
- n. In-combination LSE have been identified for Development 3 and 12 during operation. The risk relates to increased potential for adverse cumulative effects in relation to increased pollutants released by accidental spillage and leakage of oil, hydrocarbons and hazardous substances. These could impact the quality of the local drains and potentially the River Ouse (functionally-linked land used by otter that could be part of Lower Derwent Valley SAC populations). This could lead to increased impacts relative to operation of the Proposed Scheme alone (see **Table 3.17** of the **HRA Report** (document reference 6.8.1). In-combination LSE have also been identified for Developments 1, 4, 5, 47, and 74 during operation in the with Proposed Scheme scenario. The risk arises because these developments would produce emissions of one or more pollutant that could combine with the Proposed Scheme's emissions to air in the with Proposed Scheme scenario. The maximum cumulative PC impacts on annual acid deposition, exceed the 1% screening criterion at Lower Derwent Valley SAC (see **Section 6.12** of **Chapter 6** (Air Quality) of Volume 1 of the ES (document reference 6.1.6). Given the existing levels of acid deposition at these sites, the maximum PEC exceeds the respective critical loads. Potential LSE cannot be ruled out and require further analysis (see **Table 3.14** of the **HRA Report** (document reference 6.8.1).
- o. In-combination LSE have been identified for Development 3 and Development 6 during construction and decommissioning of the Proposed Scheme. Development 3 involves permanent land take within the ZoI of the Proposed Scheme for a Convertor Station. The development involves the installation of a cable crossing of the River Ouse downstream of the Proposed Scheme under the River Ouse by Horizontal Directional Drilling (HDD) or similar. The cable may also be installed across smaller watercourses and other land by open-cut techniques. Installation of the cable could therefore also lead to short-term temporary loss of functionally linked habitat that may be used by otter (**Table 3.8** of the **HRA Report**, document reference 6.8.1), and increased risk of accidental release of water-borne pollutants within watercourses including the River Ouse that may be used by otter, (**Table 3.11** of the **HRA Report**); these species are likely to form part of the River Derwent SAC population. In addition, there is potential for in-combination visual disturbance impacts between Development 6 and the Proposed Scheme to be worse than those of either project alone. LSE are therefore also identified in relation to visual disturbance for the otter qualifying interest (see **Table 3.13** of the **HRA Report** (document reference 6.8.1).

HRA Screening Matrix 3: Lower Derwent Valley SPA

Name of European site and designation: Lower Derwent Valley SPA **EU Code:** UK0006096

Distance to NSII		km																									
European site features												L	ikely e	ffects	of NSI	Р											
Effect	s hab	Loss of turband upportionitats wing signated	e of ng ithin	dis	or mec turban tionally land		Emis	ssion o	f dust	re	ccident eleases aterboi ollutar	of rne	pol	eased ri lution fi liment l	rom	Noise	disturt	oance	dis	Visua sturba		1	nission ated flu to air	e gas		ombinat effects	tion
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Northern Shoveler (Spatula clypeata)	×a		×a	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	×g	xf	√h	×i	√h		×j		√k	√I	√k
Eurasian wigeon (Anas <i>clypeata</i>)	×a		×a	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	×g	xf	√h	×i	√h		×j		√k	√I	√k
Bewick's swan (Cygnus columbianus bewickii)	×a		×a	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	×g	xf	√h	×i	√h		×j		√k	√I	√k
Golden plover (<i>Pluvialis</i> apricaria)	×a		×a	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	×g	xf	√h	×i	√h		×j		√k	√I	√k
Ruff (<i>Philomachus</i> <i>pugnax</i>)	×a		×a	√b		√b	√ C		√c	√d	√d	√d	√e		√e	xf	×g	xf	√h	×i	√h		×j		√k	√I	√k
Teal (Anas cracca)	×a		×a	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	×g	xf	√h	×i	√h		×j		√k	√I	√k
Lapwing (Vanellus vanellus)	×a		×a	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	×g	xf	√h	×i	√h		×j		√k	√I	√k
Pochard (Aythya farina)	×a		×a	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	×g	xf	√h	×i	√h		×j		√k	✓I	√k
Shoveler (Anas clypeata)	×a		×a	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	×g	xf	√h	×i	√h		×j		√k	√I	√k
Mallard (Anas platyrhynchos)	×a		×a	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	×g	xf	√h	×i	√h		×j		√k	√I	√k
Wigeon (Anas Penelope)	×a		×a	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	×g	xf	√h	×i	√h		×j		√k	✓I	√k

- **a.** There would be no loss of habitats within any European Site arising from construction or decommissioning (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 3 of the ES (document reference 6.2.8.3)).
- b. The off-site Habitat Provision Area includes scrub and former arable farmland habitats that could potentially be of some limited value to wintering SPA bird species for foraging and roosting. The off-site Habitat Provision Area would not be subject to construction activities, rather the habitat present would be enhanced to deliver ecological mitigation and support the delivery of Biodiversity Net Gain. The Habitat Provision Area and surrounding farmland habitats plus the Carr Dyke watercourse may also be used on occasion by low numbers of wintering birds that are associated with the Lower Derwent Valley SPA and Ramsar Site (see **Table 3.3** in the **HRA Report** (document reference 6.8.1)). As such, LSE are predicted to arise.
- c. Emissions of dust from construction activities could be relevant to ecological receptors up to 50 m from construction activities. A limited extent of Carr Dyke is located within 50m of the Woodyard as are limited extents of farmland habitats within and adjacent to the Habitat Provision Area. land within and adjacent to the Habitat Provision Area and Carr Dyke may form functionally-linked land that is used occasionally by some of the bird qualifying interests associated with Lower Derwent Valley SPA (see **Table 3.3** and **paragraphs 3.5.5** to **3.5.10** in the **HRA Report** (document reference 6.8.1. As such, LSE are predicted to arise.
- d. As set out between paragraph 12.9.9 and 12.9.11 of Chapter 12 (Water Environment) in Volume 1 of the ES (document reference 6.1.12), in the absence of mitigation Carr Dyke may be at increased risk of pollution from accidental spillages of oils, hydrocarbons, and hazardous substances during construction, operation, and decommissioning. Paragraph 12.9.15 of Chapter 12 (Water Environment) also identifies that River Ouse, approximately 1.4 km downstream of option 1 of the Carbon Dioxide Delivery Terminal Compound, is at risk of such pollution events during construction. Paragraph 12.9.31 of Chapter 12 (Water Environment) also identifies Carr Dyke and River Ouse would be at increased risk of deterioration of water quality due to surface water runoff from the Proposed Scheme during operation, leading to deterioration of the habitats present. Carr Dyke and River Ouse may be used on occasion by wintering birds that are associated with Lower Derwent Valley SPA and Ramsar. As such, LSE are predicted.
- e. Increased sediment loading of the Carr Dyke during construction and decommissioning could lead to short term and temporary impacts on water quality and the plant communities it contains (see paragraph 3.5.12 of the HRA Report (document reference 6.8.1)). Carr Dyke may be used on occasion by birds that are associated with Lower Derwent Valley SPA and Ramsar. As such, LSE are predicted to arise.
- f. Noise and vibration from habitat creation and management activities in the Off-site Habitat Provision Area and habitats in and adjacent to the Habitat Provision Area could potentially disturb low numbers of SPA bird species, should any be present at the time that habitat creation activities occurred. It should be noted that the Off-site Habitat Provision Area is bisected by a footpath, and as such is already subject to a degree of regular disturbance from human activity such as dog-walking. As such it is unlikely to be regularly used by SPA bird species. In the event that low numbers of SPA bird species were displaced, there is extensive alternative habitat available in the local area that they could occupy instead. As such, any displacement of SPA bird species that did occur is not expected to materially affect their condition or ability to persist in the environment. The assessment of noise and vibration presented in the ES considered several Biodiversity Receptor locations, including within and adjacent to the Habitat Provision Area north of the Power Station Site. The locations of these are shown on Figure 7.2 of Chapter 7 (Noise and Vibration) of the ES (document reference 6.2.7.2). The results of the construction and operational noise modelling for Biodiversity Receptors are set out in Table 1 of Appendix 7.6 (Biodiversity Receptors) of Chapter 7 (Noise and Vibration) of the ES (document reference 6.3.7.6). Several Biodiversity Receptors (BR 2 BR6) are located to the north of Drax Power Station Site, within the Habitat Provision Area. The maximum predicted noise levels are 39 LAeq,T dB. Research collated to inform assessments of waterbird disturbance identifies that SPA bird species are unlikely to be displaced by noise levels under 55dB (see Table 3.4 in the HRA Report (document reference 6.8.1). In light of the minimal noise impacts associated with construction and decommissioning, no LSE are predicted to arise.
- g. The maximum noise level at any Biodiversity Receptor considered to provide functionally linked habitat (Biodiversity Receptor 5) is 28 LAeq,T dB (see Appendix 7.6 (Biodiversity Receptors) of Chapter 7 (Noise and Vibration) of the ES (document reference 6.3.7.6)). Additional detail is presented in paragraphs 3.6.6 to 3.6.7 of the HRA Report (document reference 6.8.1). Given the very low levels of noise that would arise from operation of the Carbon Capture Plant, no disturbance of any European Site qualifying interests is predicted to arise.
- h. Birds that form part of the Lower Derwent Valley SPA population may occasionally also use habitats outside the SPA, potentially including Carr Dyke and farmland habitats within and adjacent to the Habitat Provision Area. adjacent to the Proposed Scheme. SPA bird species may be discouraged from using areas close (within up to a maximum of 300 m, although most likely less) to construction activities in this area due to visual disturbance from plant and personnel. The potential for disturbance is considered to be limited to activities associated with construction and laydown in the Woodyard, in the north of the Power Station Site. Construction and decommissioning activities elsewhere are considered to have negligible potential to trigger visual disturbance due to absence of functionally-linked land or being located in areas which have limited intervisibility with functionally-linked land. As such, there are potential LSE to SPA bird qualifying feature arising from works in the Woodyard area (see **Table 3.5** in the **HRA Report** (document reference 6.8.1).
- i. Operational activities with potential to disturb qualifying interests of the Lower Derwent Valley SPA include the presence of additional personnel within the Power Station site, potential requirements for operational lighting, and habitat management in the Habitat Provision Area and Off-Site Habitat Provision Area. These activities are considered to have very limited scope to lead to significant disturbance of European Site qualifying interests, due to being confined to within the Drax Power Station Site and/or due to being equivalent to ongoing agricultural and public recreation activities in the Habitat Provision Area and Off-Site habitat Provision Area. This is analysed in detail between **paragraphs 3.6.11 to 3.6.19** of the **HRA Report** (document reference 6.8.1). As such, no LSE are predicted to arise.
- j. The bird qualifying interests of the Lower Derwent Valley SPA are not considered sensitive to the effects of operational emissions to air, as per the Air Pollution Information System (APIS) website. This is summarised in **Table 3.6** of the **HRA Report** (document reference 6.8.3.5). As such, no LSE are predicted to arise.

- k. In-combination effects during construction and decommissioning have been identified for a number of the other developments assessed. The permanent land take for the convertor station and the temporary effects of construction for the HVDC cable for Development 3 could lead to disturbance / loss of farmland and other functionally-linked habitat used by SPA bird species. Development 9 would involve the erection and subsequent operation of five wind turbines and is located approximately 1.9km west of the Proposed Scheme. Construction and operation of Development 9 could contribute to increased disturbance or displacement of SPA bird populations using functionally linked land, if these use habitats within the ZoI of Development 9. This is explored in more detail in **Table 3.12**, **3.13**, **and 3.16** of the **HRA Report** (document reference 6.8.1). Development 3 involves permanent land take within the ZoI of the Proposed Scheme for a Convertor Station. The development also involves the installation of a cable crossing of the River Ouse downstream of the Proposed Scheme under the River Ouse by Horizontal Directional Drilling (HDD) or similar. The cable may also be installed across smaller watercourses and other land by open-cut techniques. The cumulative assessment of effects on the Water Environment (see **Table 1** in **Appendix 18.5** (Cumulative Effects Assessment Matrix) of Volume 3 of the ES (document reference 6.3.18.5) identifies the potential for cumulative adverse effects, worsening the risk of water-borne pollution from the Proposed Scheme alone. This is explored in more detail in **Table 3.11** of the **HRA Report** (document reference 6.8.1). In addition, there is potential for in-combination visual disturbance impacts between Development 6 and the Proposed Scheme to be worse than those of either project alone. LSE are therefore also identified in relation to visual disturbance for the SPA bird qualifying interests of the Lower Derwent SPA (see **Table 3.13** of the **HRA Report** (document reference 6.8.1).
- I. In-combination LSE have been identified for Development 3 and 12 during operation of the Proposed Scheme. The risk relates to increased potential for adverse cumulative effects in relation to increased sediment load and pollutants released by accidental spillage and leakage of oil, hydrocarbons and hazardous substances. These could impact the quality of the local drains and potentially the River Ouse (functionally-linked land that may be used on occasion by birds that could form part of Lower Derwent Valley SPA populations). This could lead to increased impacts relative to operation of the Proposed Scheme alone (see **Table 3.17** of the **HRA Report** (document reference 6.8.1). As such, LSE are predicted to arise.

HRA Screening Matrix 4: Lower Derwent Valley Ramsar

EU Code: UK11037	(301	.)																									
Distance to NSIP:	4.3kn	1																									
European site features														Like	ly effe	cts of	NSIP										
Effect	dist habi	tats v	or ace of within ad site	dis	In combinate sectionally linked land Composition of land Compo																						
Stage of Development	С	0	D	С	0	D	С	0	D		_		С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Traditionally managed species- rich alluvial flood meadow	×a		×a	×b		×b	×d		×d	xf	xf	xf	xf		xf								√m		хо	√q	хо
Rich assemblage of wetland invertebrates (including Cicadula ornata)	×a		×a	×b		×b	×d		×d	xf	xf	xf	xf		xf								√m		хо	√q	хо
Ruff (Philomachus pugnax)	×a		×a	√c		√c	√e		√e	√g	√g	√g	√h		√h	×i	×j	×i	√k	×Ι	√k		×n		√p	√r	√p
Whimbrel (<i>Numenius</i> phaeopus)	×a		×a	√c		√c	√e		√e	√g	√g	√g	√h		√h	×i	×j	×i	√k	×I	√k		×n		√p	√r	√p

Wigeon (<i>Anas</i> <i>Penelope</i>)	×a	×a	√c	√c	√e	√e	√g	√g	√g	√h	√h	×i	×j	×i	√k	×Ι	√k	×n	√p	√r	✓p
Teal (Anas cracca)	×a	×a	√c	√c	√e	√e	√g	√g	√g	√h	√h	×i	×j	×i	√k	×Ι	√k	×n	√p	√r	√p
Assemblage of international importance – peak counts in winter: 31,942 waterfowl	×a	×a	√c	√c	√e	√e	√g	√g	√g	√h	√h	×i	×j	×i	√k	×Ι	√k	×n	√p	√r	√p

- **a.** There would be no loss of habitats within any European Site arising from construction or decommissioning (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 3 of the ES (document reference 6.2.8.3)).
- **b.** Qualifying interests of the Ramsar Site also include flood meadow habitats and wetland invertebrate species. These habitats are not present within the Site (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 2 of the ES (document reference 6.2.8.3)), and there is no comparable wetland habitat within the Site that could support the wetland invertebrate community associated with the Ramsar Site. As such, no LSE are predicted to arise.
- c. The off-site Habitat Provision Area includes scrub and former arable farmland habitats that could potentially be of some limited value to Lower Derwent Valley Ramsar bird species for foraging and roosting. The off-site Habitat Provision Area would not be subject to construction activities, rather the habitat present would be enhanced to deliver ecological mitigation and support the delivery of Biodiversity Net Gain. The Habitat Provision Area and surrounding farmland habitats including the Carr Dyke watercourse may also be used on occasion by low numbers of birds that are associated with the Lower Derwent Valley and Ramsar Site (see **Table 3.3** in the **HRA Report** (document reference 6.8.1)). As such, LSE are predicted to arise.
- **d.** Qualifying interests of the Ramsar Site include flood meadow habitats and wetland invertebrate species. These habitats are not present within the Site or within 50 m of the Proposed Scheme (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 2 of the ES (document reference 6.2.8.3)), and there is no comparable wetland habitat within the Site that could support the wetland invertebrate community associated with the Ramsar Site. As such, no LSE are predicted to arise.
- e. Emissions of dust from construction activities could be relevant to ecological receptors up to 50 m from construction activities. A limited extent of Carr Dyke is located within 50m of the Woodyard as are limited extents of farmland habitats within and adjacent to the Habitat Provision Area. land within and adjacent to the Habitat Provision Area and Carr Dyke may form functionally-linked land that is used occasionally by some of the bird qualifying interests associated with Lower Derwent Valley Ramsar (see **Table 3.3** and **paragraphs 3.5.5** to **3.5.10** in the **HRA Report** (document reference 6.8.1. As such, LSE are predicted to arise.
- f. There are no Ramsar criterion qualifying interest habitat types or habitats that would support the wetland invertebrate Ramsar community, within or adjacent to the Proposed Scheme. There are no suitable habitats along the River Ouse downstream of the Site as the tidal conditions mean the banks of the river are unsuitable (see Figure 8.3 of Chapter 8 (Ecology) in Volume 2 of the ES (document reference 6.2.8.3)). As such, no LSE are predicted.
- g. As set out between paragraph 12.9.9 and 12.9.11 of Chapter 12 (Water Environment) in Volume 1 of the ES (document reference 6.1.12), in the absence of mitigation Carr Dyke may be at increased risk of pollution from accidental spillages of oils, hydrocarbons, and hazardous substances during construction, operation, and decommissioning. Paragraph 12.9.15 of Chapter 12 (Water Environment) also identifies that River Ouse, approximately 1.4 km downstream of option 1 of the Carbon Dioxide Delivery Terminal Compound, is at risk of such pollution events during construction. Paragraph 12.9.31 of Chapter 12 (Water Environment) also identifies Carr Dyke and River Ouse would be at increased risk of deterioration of water quality due to surface water runoff from the Proposed Scheme during operation, leading to deterioration of the habitats present. Carr Dyke and River Ouse may be used on occasion by wintering birds that are associated with Lower Derwent Valley Ramsar. This is explored in more detail in paragraphs 3.5.13 to 3.5.15 (construction and decommissioning) and paragraphs 3.6.20 to 3.6.22 (operation) of the HRA Report (document reference 6.8.1). As such, LSE are predicted.
- h. Increased sediment loading of the Carr Dyke during construction and decommissioning could lead to short term and temporary impacts on water quality and the plant communities it contains (see paragraph 3.5.12 of the HRA Report (document reference 6.8.1)). Carr Dyke may be used on occasion by birds that are associated with Lower Derwent Valley Ramsar. As such, LSE are predicted to arise.
- i. Noise and vibration from habitat creation and management activities in the Off-site Habitat Provision Area and habitats in and adjacent to the Habitat Provision Area could potentially disturb low numbers of Ramsar bird species, should any be present at the time that habitat creation activities occurred. It should be noted that the Off-site Habitat Provision Area is bisected by a footpath, and as such is already subject to a degree of regular disturbance from human activity such as dog-walking. As such it is unlikely to be regularly used by Ramsar bird species. In the event that low numbers of Ramsar bird species were displaced, there is extensive alternative habitat available in the local area that they could occupy instead. As such, any displacement of Ramsar bird species that did occur is not expected to materially affect their condition or ability to persist in the environment. The assessment of noise and vibration presented in the ES considered several Biodiversity Receptor locations, including within and adjacent to the Habitat Provision Area north of the Power Station Site. The locations of these are shown on **Figure 7.2** of **Chapter 7** (Noise and Vibration) of the ES (document reference 6.2.7.2). The results of the construction and operational noise modelling for Biodiversity Receptors are set out in **Table 1** of **Appendix 7.6** (Biodiversity Receptors) of Chapter 7 (Noise and Vibration) of the ES (document reference 6.3.7.6). Several Biodiversity Receptors (BR 2 BR6) are located to the north of Drax Power Station Site, within or adjacent to the Habitat Provision Area. The maximum predicted noise levels are 39 LAeq,T dB.

- Research collated to inform assessments of waterbird disturbance identifies that Ramsar bird species are unlikely to be displaced by noise levels under 55dB (see **Table 3.4** in the **HRA Report** (document reference 6.8.1). In light of the minimal noise impacts associated with construction and decommissioning, no LSE are predicted to arise.
- j. The maximum noise level at any Biodiversity Receptor considered to provide functionally linked habitat (Biodiversity Receptor 5) is 28 LAeq,T dB (see **Appendix 7.6** (**Biodiversity Receptors**) of **Chapter 7** (Noise and Vibration) of the ES (document reference 6.3.7.6)). Additional detail is presented in **paragraphs 3.6.6 to 3.6.7** of the **HRA Report** (document reference 6.8.1). Given the very low levels of noise that would arise from operation of the Carbon Capture Plant, no disturbance of any European Site qualifying interests is predicted to arise.
- **k.** Birds that form part of the Lower Derwent Valley Ramsar populations may occasionally also use habitats outside the Ramsar, potentially including Carr Dyke and farmland habitats within and adjacent to the Habitat Provision Area, adjacent to the Proposed Scheme. Ramsar bird species may be discouraged from using areas close (within up to a maximum of 300 m, although most likely less) to construction activities in this area due to visual disturbance from plant and personnel. The potential for disturbance is considered to be limited to activities associated with construction and laydown in the Woodyard, in the north of the Power Station Site. Construction and decommissioning activities elsewhere are considered to have negligible potential to trigger visual disturbance due to absence of functionally-linked land (see **Figure 3** in the **HRA Report** (document reference 6.8.2.3) or being located in areas which have limited intervisibility with functionally-linked land. As such, there are potential LSE to Ramsar bird qualifying feature arising from works in the Woodyard area (see **Table 3.5** in the **HRA Report** (document reference 6.8.1).
- I. Operational activities with potential to disturb qualifying interests of the Lower Derwent Valley Ramsar include the presence of additional personnel within the Power Station site, potential requirements for operational lighting, and habitat management in the Habitat Provision Area and Off-Site Habitat Provision Area. These activities are considered to have very limited scope to lead to significant disturbance of European Site qualifying interests, due to being confined to within the Drax Power Station Site and/or due to being equivalent to ongoing agricultural and public recreation activities in the Habitat Provision Area and Off-Site habitat Provision Area. This is analysed in detail between **paragraphs 3.6.11 to 3.6.19** of the **HRA Report** (document reference 6.8.1). As such, no LSE are predicted to arise.
- m. Potential LSE have been identified in relation to acid deposition for Lower Derwent Valley Ramsar habitats, including in relation to their role in supporting Ramsar criterion wetland invertebrate populations. The modelled PC in the with Proposed Scheme scenario for acid deposition is above 1% of the respective critical load at sensitive habitats within the Lower Derwent Valley Ramsar (2.0%) (see **Section 6.9** of Chapter 6 (Air Quality), document reference 6.1.6). The modelled PC from the Proposed Scheme therefore exceeds the 1% significance screening criterion and potential LSE cannot be ruled out and require further analysis (see **paragraphs 3.6.3 to 3.6.5** of the **HRA Report** (document reference 6.8.1).
- **n.** The bird qualifying interests of the Lower Derwent Valley Ramsar are not considered sensitive to the effects of operational emissions to air, as per the Air Pollution Information System (APIS) website data for the Lower Derwent Valley SPA (the Ramsar criterion designating bird interests are comparable to the SPA bird qualifying interests, with no information on the Ramsar specifically, held on APIS). This is summarised in **Table 3.6** of the **HRA Report** (document reference 6.8.1), and explored in detail in **Appendix 5** of the **HRA Report** (document reference 6.8.3.5). As such, no LSE are predicted to arise.
- **o.** The Proposed Scheme is not predicted to have any effects whatsoever on these Ramsar features during construction or decommissioning. This is because there is no prospect of the impact pathways identified for the Proposed Scheme alone to lead to biophysical changes that could affect these features. As such, it is not possible for the Proposed Scheme to contribute to in-combination effects and no LSE are predicted to arise.
- p. In-combination effects during construction and decommissioning have been identified for a number of the other developments assessed. The permanent land take for the convertor station and the temporary effects of construction for the HVDC cable for Development 3 could lead to disturbance / loss of farmland and other functionally-linked habitat used by Ramsar bird species. Development 9 would involve the erection and subsequent operation of five wind turbines and is located approximately 1.9km west of the Proposed Scheme. Construction and operation of Development 9 could contribute to increased disturbance or displacement of Ramsar bird populations using functionally linked land, if these use habitats within the ZoI of Development 9. This is explored in more detail in **Table 3.12, 3.13, and 3.16** of the **HRA Report** (document reference 6.8.1). Development 3 involves permanent land take within the ZoI of the Proposed Scheme for a Convertor Station. The development also involves the installation of a cable crossing of the River Ouse downstream of the Proposed Scheme under the River Ouse by Horizontal Directional Drilling (HDD) or similar. The cable may also be installed across smaller watercourses and other land by open-cut techniques. The cumulative assessment of effects on the Water Environment (see **Table 1** in **Appendix 18.5** (Cumulative Effects Assessment Matrix) of Volume 3 of the ES (document reference 6.3.18.5) identifies the potential for cumulative adverse effects, worsening the risk of water-borne pollution from the Proposed Scheme alone. This is explored in more detail in **Table 3.11** of the **HRA Report** (document reference 6.8.1). In addition, there is potential for in-combination visual disturbance impacts between Development 6 and the Proposed Scheme to be worse than those of either project alone. LSE are therefore also identified in relation to visual disturbance for the Ramsar bird qualifying interests of the Lower Derwent Ramsar (see **Table 3.13** of the **HRA Report** (document reference 6.8.1).
- q. In-combination LSE have been identified for Developments 1, 4, 5, 47, and 74 during operation in the with Proposed Scheme scenario. The risk arises because these developments would produce emissions of one or more pollutant that could combine with the Proposed Scheme's emissions to air in the with Proposed Scheme scenario. The maximum cumulative PC impacts on annual acid deposition, exceed the 1% screening criterion at Lower Derwent Valley SAC (see **Section 6.12** of **Chapter 6** (Air Quality) of Volume 1 of the ES (document reference 6.1.6). Given the existing levels of acid deposition at these sites, the maximum PEC exceeds the respective critical loads. Potential LSE cannot be ruled out and require further analysis (see **Table 3.14** of the **HRA Report** (document reference 6.8.1).
- r. In-combination LSE have been identified for Development 3 and 12 during operation of the Proposed Scheme. The risk relates to increased potential for adverse cumulative effects in relation to increased sediment load and pollutants released by accidental spillage and leakage of oil, hydrocarbons and hazardous substances. These could impact the quality of the local drains and potentially the River Ouse (functionally-linked land that may be used on occasion by birds that could form part of Lower Derwent Valley SPA populations). This could lead to increased impacts relative to operation of the Proposed Scheme alone (see **Table 3.17** of the **HRA Report** (document reference 6.8.1). As such, LSE are predicted to arise.

HRA Screening Matrix 5: Skipwith Common SAC

Name of European site and designation: Skipwith Common SAC
EU Code: UK0030276

Distance to NSIP: 7.6 km

Distance to it.																											
European site features											L	ikely	effect	s of N	ISIP												
Effect	dist hab	Loss or urbanc itats wi gnated	e of ithin	m dist	Loss of nechanic turbanc ionally land	cal ce of	Emis	sion of	dust	of v	ental rele waterbor ollutants	ne	of pol	eased lution ment l	from	1	Noise turban	ice	d	Visual Iisturban	се	tı	missio reated gas to	flue		ombin effects	
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Northern Atlantic wet heaths with Erica tetralix	×a		×a	×b		×b	×c		×c	×d	×d	×d	×d	×d	×d								×e		×f	√g	×f
European dry heaths	×a		×a	×b		×b	×c		×c	×d	×d	×d	×d	×d	×d								×e		×f	√g	×f

- **a.** There would be no loss of habitats within any European Site arising from construction or decommissioning (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 3 of the ES (document reference 6.2.8.3)).
- b. The closest part of Skipwith Common SAC is located approximately 7.2 km from the Proposed Scheme. Qualifying Interests of the SAC include heathland habitats, as set out in **Table 3.2** of the **HRA Report** (document reference 6.8.1). None of the qualifying interest habitats occur within or adjacent to the Site (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 3 of the ES (document reference 6.2.8.3). This is explored in more detail in **Table 3.3** of the **HRA Report**. As such, the Proposed Scheme would not result in the loss or disturbance of functionally linked land and no LSE are predicted to arise.
- c. There are no Annex 1 qualifying interest habitat types within 50 m of the Proposed Scheme (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 2 of the ES (document reference 6.2.8.3)). This is explored in more detail in **between paragraphs 3.5.5 and 3.5.10** of the **HRA Report**. There is therefore no potential for dust deposition onto functionally-linked SAC habitats and LSE are not predicted to arise.
- **d.** There are no Annex 1 qualifying interest habitat types within or adjacent to the Proposed Scheme and they do not occur along any watercourses downstream of the Site (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 2 of the ES (document reference 6.2.8.3)). As such, no LSE are predicted to arise.
- e. Paragraphs 6.9.20 to 6.9.33 of Chapter 6 (Air Quality) of Volume 1 of the ES (document reference 6.1.6) set out the findings of the air quality modelling for European Sites. The air quality dispersion modelling results (as set out in **Table A6.3.20 to Table A6.3.22** of **Appendix 6.5** of Volume 3 of the ES (document reference 6.3.6.5)) show that the PC in the with Proposed Scheme scenario is ≤1% of the critical level for Skipwith Common SAC for NOx, NH₃, and SO₂. The impacts of the operation of the with Proposed Scheme scenario alone on annual nitrogen deposition rates and annual acid deposition rates are also classified as insignificant (≤1% of the critical load) for Skipwith Common SAC. This matter is explored in more detail in **Section 3.5** of the **HRA Report** (document reference 6.8.1). Given the results of the air quality dispersion modelling, no LSE are predicted to arise.
- **f.** The Proposed Scheme is not predicted to have any effects whatsoever on these SAC features during construction or decommissioning. This is because there is no prospect of the impact pathways identified for the Proposed Scheme alone to lead to biophysical changes that could affect these features, i.e. the SAC habitats are entirely outside the ZoI of construction and decommissioning impacts. As such, it is not possible for the Proposed Scheme to contribute to in-combination effects and no LSE are predicted to arise.
- g. In-combination LSE have been identified for Developments 1, 4, 5, 47, and 74 during operation in the with Proposed Scheme scenario. The risk arises because these developments would produce emissions of one or more pollutant that could combine with the Proposed Scheme's emissions to air in the with Proposed Scheme scenario. The maximum cumulative PC impacts on annual acid deposition, exceed the 1% screening criterion at Skipwith Common SAC (see **Section 6.12** of **Chapter 6** (Air Quality) of Volume 1 of the ES (document reference 6.1.6), with a maximum predicted cumulative impact equivalent to 1.1% of Critical Load. Given the existing levels of acid deposition at Skipwith Common SAC, the maximum PEC exceeds the respective critical loads. Potential LSE cannot be ruled out and require further analysis (see **Table 3.14** of the **HRA Report** (document reference 6.8.1).

HRA Screening Matrix 6: Thorne and Hatfield Moors SPA

Name of European site and designation: Thorne and Hatfield Moors SPA **EU Code:** UK9005171 Distance to NSIP: 9.1 km Likely effects of NSIP European site features Effect Loss or Loss or mechanical Emission of dust Accidental Increased risk Noise Visual Emissions of In combination disturbance of disturbance of releases of of pollution disturbance disturbance effects treated flue gas waterborne habitats within functionally linked from sediment to air designated site pollutants land load 0 0 С 0 D С 0 С 0 D С С 0 D C0 D Stage of CD 0 D С D 0 D Development Nightiar Caprimulgus Хa ×b ×b хb Хb Хb Хb ×b ×b ×b ×b ×b Хb ×b ×b ×b хb ХC ×d ×d Хa xd europeaus

- **a.** There would be no loss of habitats within any European Site arising from construction or decommissioning (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 3 of the ES (document reference 6.2.8.3)).
- b. The closest part of Thorne and Hatfield Moors SPA is located approximately 9.1 km from the Proposed Scheme. The only qualifying interest of the SPA is nightjar, as set out in **Table 3.2** of the **HRA Report** (document reference 6.8.1). This species is strongly associated with heathland, moorland, woodlands with large clearings and recently felled plantations. There are no such habitats within or adjacent to the Site (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 3 of the ES (document reference 6.2.8.3) or within the Zone of Influence of the impact pathways from the Proposed Scheme (with the exception of operational air quality impacts). As such, none of the biophysical changes occurring during construction, operation, or decommissioning from the Proposed Scheme (with the possible exception of air quality impacts) would have a likely significant effect on the qualifying interests of Thorne and Hatfield Moors SPA. This is analysed in more detail in Section 3.5 of the HRA Report (document reference 6.8.1).
- c. The sole qualifying interest of the Thorne and Hatfield Moors SPA (nightjar) is not considered sensitive to the effects of acid deposition, as per the Air Pollution Information System (APIS) website. This is summarised in **Table 3.6** of the **HRA Report** (document reference 6.8.1), and explored in detail in **Appendix 5** of the **HRA Report** (document reference 6.8.3.5). There are no exceedances of the 1% significance screening criterion for any other air pollutant (see **Section 6.9** of Chapter 6 (Air Quality), document reference 6.1.6). As such, no LSE are predicted to arise.
- d. The closest part of Thorne and Hatfield Moors SPA is located approximately 9.1 km from the Proposed Scheme. The only qualifying interest of the SPA is nightjar, as set out in **Table 3.2** of the HRA Report (document reference 6.8.1). This species is strongly associated with heathland, moorland, woodlands with large clearings and recently felled plantations. There are no such habitats within or adjacent to the Site (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 3 of the ES (document reference 6.2.8.3) or expected to be within the Zone of Influence of the impact pathway from the Proposed Scheme. As identified above in relation to operational emissions to air for the Proposed Scheme alone, nightjar is not considered to be sensitive to acid deposition. There are no exceedances of the 1% significance screening criterion for any other air pollutant in-combination with other plans and projects (see **Section 6.12** of **Chapter 6** (Air Quality), document reference 6.1.6). As such, none of the biophysical changes occurring during construction, operation, or decommissioning from the Proposed Scheme would have a likely significant effect on the qualifying interests of Thorne and Hatfield Moors SPA. This is analysed in more detail in **Table 3.14** of the HRA Report (document reference 6.8.1).

HRA Screening Matrix 7: Thorne Moor SAC

Name of Euro																											
EU Code: UK00																											
Distance to NS	SIP: 9.	1 km																									
European site features												Likel	y effe	cts of	NSIF	•											
Effect	dist hab	Loss or urbanc itats wi gnated	e of ithin	dist	or mech turbanc ionally land	e of	Emis	ssion of	dust -	re wa	ccidenta leases aterbori ollutant	of ne	of	reased polluti n sedir load	ion	dis	Noise sturbar			Visual turbar		1	nissior ted flu to aii	ie gas		ombin effects	
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Degraded raised bogs still capable of natural regeneration	×a		×a	×b		×b	×b		×b	×b	×b	×b	×b	×b	×b								√c		×b	√d	×b

- **a.** There would be no loss of habitats within any European Site arising from construction or decommissioning (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 3 of the ES (document reference 6.2.8.3)). As such, no LSE are predicted to arise.
- **b.** The closest part of Thorne Moor SAC is located approximately 9.1 km from the Proposed Scheme. The only qualifying interest of the SAC is the degraded raised bog feature, as set out in **Table 3.2** of the **HRA Report** (document reference 6.8.1). There are no such habitats within or adjacent to the Site (see **Figure 8.3** of Chapter 8 (Ecology) in Volume 3 of the ES (document reference 6.2.8.3) or within the Zone of Influence of the impact pathway from the Proposed Scheme (with the exception of operational air quality impacts). As such, none of the biophysical changes occurring during construction, operation, or decommissioning from the Proposed Scheme (with the possible exception of air quality impacts) would have any effect on the qualifying interests of Thorne Moor SAC. This is analysed in more detail in **Section 3.5** of the **HRA Report** (document reference 6.8.1). As such, no LSE are predicted to arise.
- c. Potential LSE have been identified in relation to acid deposition for Thorne Moor SAC. The modelled PC in the with Proposed Scheme scenario for acid deposition is above 1% of the respective critical load at sensitive habitats within the Thorne Moor SAC (2.0%) (see **Section 6.9** of Chapter 6 (Air Quality), document reference 6.1.6). The modelled PC from the Proposed Scheme therefore exceeds the 1% screening criterion and potential LSE cannot be ruled out and require further analysis (see **paragraphs 3.6.3 to 3.6.5** of the **HRA Report** (document reference 6.8.1).
- d. In-combination LSE have also been identified for Developments 1, 4, 5, 47, and 74 during operation in the with Proposed Scheme scenario. The risk arises because these developments would produce emissions of one or more pollutant that could combine with the Proposed Scheme's emissions to air in the with Proposed Scheme scenario. The maximum cumulative PC impacts on annual acid deposition and annual nitrogen deposition, exceed the 1% screening criterion for the degraded raised bog habitat at Thorne Moor SAC (see **Section 6.12** of **Chapter 6** (Air Quality) of Volume 1 of the ES (document reference 6.1.6). Given the existing levels of acid deposition and nitrogen deposition at these sites, the maximum PEC exceeds the respective critical loads. Potential LSE cannot be ruled out and require further analysis (see **Table 3.14** of the **HRA Report** (document reference 6.8.1).

HRA Screening Matrix 8: Humber Estuary SAC Name of European site and designation: Humber Estuary SAC EU Code: UK0030170

Distance to NSIP: 6.3 km

Distance to NSIP	. 0.5	KIII																									
European site features												Like	ely eff	fects (of NSI	Р											
Effect	dist hab	Loss of Eurband itats wi ignated	ce of vithin	dist	or mech curbanc ionally land	e of	Emis	ssion of	dust	re wa	ccidenta leases (aterborr ollutant	of ne	of	reased pollut n sedii load	ion	dis	Noise sturbai			/isual urbar		1	nission ted flu to aii	ie gas		ombina effects	
Stage of Development	С	0	D	С	0	D	С	0	D	C	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Estuaries	×a		×a	×b		×b	×d		×d	×е	×е	×е	×h	×h	×h								×j		×k	×m	×k
Mudflats and sandflats not covered by seawater at low tide	×a		×a	×b		×b	×d		×d	Хe	×е	×e	×h	×h	×h								×j		×k	×m	×k
Sandbanks which are slightly covered by sea water all the time	×a		×a	×b		×b	×d		×d	×e	×e	×e	×h	×h	×h								×j		×k	×m	×k
Coastal lagoons	×a		×a	×b		×b	×d		×d	Хe	Хe	×е	×h	×h	×h								×j		×k	×m	×k
Salicornia and other annuals colonising mud and sand	×a		×a	×b		×b	×d		×d	×е	×е	Хe	×h	×h	×h								×j		×k	×m	×k
Atlantic salt meadows	×a		×a	×b		×b	×d		×d	×е	×е	×е	×h	×h	×h								×j		×k	×m	×k
Embryonic shifting dunes	×a		×a	×b		×b	×d		×d	×е	×е	×е	×h	×h	×h								×j		×k	×m	×k
Shifting dunes along the shoreline with <i>Ammophila</i> arenaria "white dunes	×a		×a	×b		×b	×d		×d	Хe	×е	×е	×h	×h	×h								×j		×k	×m	×k
Fixed coastal dunes with herbaceous vegetation "grey dunes"	×a		×a	×b		×b	×d		×d	×e	×е	×e	×h	×h	×h								×j		×k	×m	×k

Dunes with Hippopha rhamnoides	×a	×a	×b	×b	×d	×d	Хe	Хe	Хe	×h	×h	×h							×j	×k	×m	×k
Sea lamprey Petromyzon marinus	×a	×a	×c	×c	×d	×d	√f	√f	√f	×h	×h	×h	×i	×i	×i	×i	×i	×i	×j	✓I	√n	√ I
River lamprey Lampetra fluviatilis	×a	×a	×c	×c	×d	×d	√f	√f	√f	×h	×h	×h	×i	×i	×i	×i	×i	×i	×j	✓I	√n	√ I
Grey seal Halichoerus grypus	×a	×a	×c	Хc	×d	×d	×g	×g	×g	×h	×h	×h	×i	×i	×i	×i	×i	×i	×j	×k	×m	×k

- **a.** There would be no loss of habitats within any European Site arising from construction or decommissioning (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 3 of the ES (document reference 6.2.8.3)). As such, no LSE are predicted to arise.
- **b.** None of the qualifying interest habitats occur within 50 m of the Site (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 3 of the ES (document reference 6.2.8.3). As such, no LSE are predicted to arise.
- **c.** There are no habitats suitable to support the qualifying interest species (sea and river lamprey, and grey seal) within the Site (see **Table 3.3** in the **HRA Report** (document reference 6.8.1). As such, no LSE are predicted to arise.
- **d.** There are no Annex 1 qualifying interest habitat types within 50 m of the Proposed Scheme and no habitat suitable for grey seal (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 2 of the ES (document reference 6.2.8.3)). No construction activities will take place within 50 m of functionally-linked habitat (the River Ouse) used by river and sea lamprey. There is therefore no potential for dust deposition onto functionally-linked SAC habitats. As such, no LSE are predicted to arise.
- **e.** None of the qualifying interest habitats occur within the ZoI of water-borne pollutants, as set out in **Table 12.2** of **Chapter 12** (Water Environment) of Volume 1 of the ES (document reference 6.1.12). As such, no LSE are predicted to arise.
- **f. Paragraph 12.9.15** of **Chapter 12** (Water Environment) of Volume 1 of the ES (document reference 6.1.12) identifies that River Ouse, approximately 1.4 km downstream of the Carbon Dioxide Delivery Compound, is at risk of pollution events arising from accidental spillages of oils, hydrocarbons, and hazardous substances during construction and decommissioning. The River Ouse is a migratory route for river and sea lamprey. Sea and river lamprey using the River Ouse are also likely to be part of the qualifying interest populations for which the Humber Estuary SAC has been designated. **Paragraph 12.9.31** of **Chapter 12** (Water Environment) also identifies Carr Dyke and River Ouse would be increased risk of deterioration of water quality due to surface water runoff from the Proposed Scheme during operation, which could led to deterioration of the habitats present. This is explored in more detail between **paragraphs 3.5.13** to **3.5.15**, and **paragraphs 3.6.20** to **3.6.22** of the **HRA Report** (document reference 6.8.1). As such, LSE are predicted to arise.
- **g.** Grey seal is unlikely to occur within the ZoI of water-borne pollutants, as they are unlikely to travel upstream along the River Ouse beyond the boundaries of the SAC. As set out in **Table 12.2** of **Chapter 12** (Water Environment) of Volume 1 of the ES (document reference 6.1.12), the SAC itself is considered to be outside the ZoI for impacts on the Water Environment. As such, no LSE are predicted to arise.
- h. Sediment loading has been identified as a risk to water quality of the Carr Dyke during construction (see paragraph 12.9.3 and 12.9.6 of Chapter 12 (Water Environment) in Volume 1 of the ES (document reference 6.1.12). The River Ouse is not expected to be affected, due to the distance between the Proposed Scheme and the Ouse. River and sea lamprey are not expected to use the Carr Dyke due to the barrier posed by pumping station infrastructure (see Table 3.4 in the HRA Report (document reference 6.8.1), and there are no qualifying interest habitats or potential for other qualifying interest species (grey seal) to be present. As such, no LSE are predicted.
- i. None of the qualifying interest habitats occur within the Site (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 3 of the ES (document reference 6.2.8.3). There are no habitats suitable to support the qualifying interest species (sea and river lamprey, and grey seal) in areas that could be subject to noise and vibration or visual disturbance. This is explored in more detail in **Table 3.4**, **Table 3.5**, and between **paragraphs 3.6.6 to 3.6.19** of the **HRA Report** (document reference 6.8.1). In light of this, no LSE are predicted in relation to noise and vibration or visual disturbance of SAC qualifying interests.
- j. Humber Estuary SAC qualifying interests are not considered to be sensitive to acid deposition impacts as per the Air Pollution Information System (APIS website). This is summarised in **Table 3.6** of the **HRA Report** (document reference 6.8.1), with additional analysis in Appendix 5 of the **HRA Report** (document reference 6.8.3.5). The air quality dispersion modelling results (see **Section 6.9** of **Chapter 2** (Air Quality) of Volume 1 of the ES (document reference 6.1.6) show that the PC from the Proposed Scheme is ≤1% of the critical level for all

- European Sites for NOx, NH₃, and SO₂, with no exceedance of the Critical Level with or without the Proposed Scheme. The PC from the Proposed Scheme is also below 1% of Critical Load for nitrogen deposition.
- **k.** Qualifying interest habitats of the SAC do not occur within the ZoI of the Proposed Scheme during construction and decommissioning nor is there suitable habitat for grey seal present. As such, these qualifying interests are not predicted to be subject to any effects during this phase of the Proposed Scheme (see **Tables 3.8 3.17** in the **HRA Report** (document reference 6.8.1). The Proposed Scheme is considered *de minimis*, with no prospect of contributing to significant effects on the SAC that may arise from other Plans and Projects. As such, no LSE are predicted to arise.
- In-combination LSE have been identified for Development 3 during construction and decommissioning of the Proposed Scheme. Development 3 involves permanent land take within the ZoI of the Proposed Scheme for a Convertor Station and cable installation. The development involves the installation of a cable crossing of the River Ouse downstream of the Proposed Scheme under the River Ouse by Horizontal Directional Drilling (HDD) or similar. The cable may also be installed across smaller watercourses and other land by open-cut techniques. Installation of the cable could therefore lead to an increased risk of accidental release of water-borne pollutants within watercourses including the River Ouse, which is used by sea lamprey and river lamprey qualifying interests to migrate between the Humber Estuary and upstream spawning grounds including the River Derwent (see **Tables 3.8 and 3.11** of the **HRA Report** (document reference 6.8.1) for further analysis. As such, in-combination LSE are predicted to arise.
- m. Humber Estuary SAC qualifying interests are not considered to be sensitive to acid deposition impacts as per the Air Pollution Information System (APIS website). This is summarised in Table 3.6 of the HRA Report (document reference 6.8.1), with additional analysis in Appendix 5 of the HRA Report (document reference 6.8.3.5). The air quality dispersion modelling results (see Section 6.12 of Chapter 2 (Air Quality) of Volume 1 of the ES (document reference 6.1.6) show that the PC from the Proposed Scheme in-combination with other emitting developments is ≤1% of the critical level for all European Sites for NOx, NH₃, and SO₂. The PC from the Proposed Scheme in-combination with other plans and projects is also below 1% of Critical Load for nitrogen deposition. Qualifying interest habitats of the SAC and grey seal do not occur within the ZoI of the Proposed Scheme for any other impact pathways during operation. As such, no LSE are predicted to arise.
- n. In-combination LSE have been identified for Development 3 and 12 during operation. The risk relates to increased potential for adverse cumulative effects in relation to increased pollutants released by accidental spillage and leakage of oil, hydrocarbons and hazardous substances. These could impact the quality of the local drains and potentially the River Ouse (functionally-linked land used by river lamprey and sea lamprey). This could lead to increased impacts relative to operation of the Proposed Scheme alone (see **Table 3.17** of the **HRA Report** (document reference 6.8.1). As such, in-combination LSE are predicted to arise.

HRA Screening Matrix 9: Humber Estuary SPA

Name of Euro EU Code: UK9			u uesi	gnatio	III. HUI	iibei Es	stuai y	SPA																			
Distance to N																											
European site features												Likely	effect	s of N	NSIP												
Effect	dist sı hab	Loss of turbanc upporti itats w ignated	ce of ng rithin	dist	Loss of echani- turbanc ionally land	cal ce of	Emis	sion of	dust	of	lental r waterb pollutai		of	eased pollut sedii load	ion ment	di	Nois sturb		dis	Visu sturba			missior ated flu to aii	ie gas	In	combina effects	
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Eurasian teal Anas crecca	xa		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	√	√k
Eurasian wigeon Anas Penelope	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	√	√k
mallard <i>Anas</i> platyrhynchos	xa		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	√	√k
turnstone Arenaria interpres	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	√	√k

Name of Euro EU Code: UK9			<u></u>	giiatii	····		ocuu. y	0.71																			
Distance to N	SIP: 6	5.3km																									
European site features												Likely	effect	s of N	ISIP												
Effect	s hab	Loss o turband upporti bitats w signated	ce of ing vithin	dis	Loss of nechani sturband tionally land	cal ce of	Emis	sion of	dust	of	lental r waterb pollutai		of	eased polluti sedin load	ion	di	Nois sturb		di	Visu sturb		1	nissior ted flu to aii	e gas	In c	combina effects	
common pochard <i>Aythya farina</i>	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	хf	хg	xf	√h	хi	√h		хj		√k	✓	√k
greater scaup Aythya marila	Xa		Xa	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	✓	√k
brent goose Branta bernicla bernicla	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	✓	√k
common goldeneye Bucephala clangula	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	√	√k
sanderling <i>Calidris alba</i>	ха		xa	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	✓	√k
avocet Recurvirostra avosetta	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	✓	√k
bittern Botaurus stellaris	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	хf	√h	хi	√h		хj		√k	✓	√k
hen harrier Circus cyaneus	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	хf	√h	хi	√h		хj		√k	✓	√k
golden plover Pluvialis apricaria	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	✓	√k
bar-tailed godwit <i>Limosa</i> <i>lapponica</i>	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	✓	√k
ruff Philomachus pugnax	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	✓	√k
marsh harrier Circus aeruginosus	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	✓	√k

Name of Euro			d desi	gnatio	n: Hur	nber E	stuary	SPA																			
EU Code: UK9 Distance to N																											
European site features	311 1 0	<u> </u>										Likely	effect	s of N	ISIP												
Effect	dist su hab	Loss or turbanc upportin itats wi	e of ng ithin	dis	Loss or nechanic turbanc ionally land	cal re of	Emis	sion of	dust	of	lental r waterb pollutai		of	reased pollut n sedii load	ion	di	Nois sturba		di	Visu sturb		I	missior ated flu to ai	ıe gas	In c	ombina effects	tion
little tern Sternula albifrons	ха		xa	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	хf	√h	хi	√h		хj		√k	✓	√k
common ringed plover <i>Charadrius</i> <i>hiaticula</i>	xa		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	√I	√k
Eurasian curlew <i>Numenius</i> arquata	ха		xa	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	√ I	√k
whimbrel Numenius Phaeopus	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	хf	√h	хi	√h		хj		√k	√I	√k
greenshank Tringa nebularia	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	√I	√k
lapwing Vanellus vanellus	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	√I	√k
shelduck Tadorna tadorna	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	xg	xf	√h	хi	√h		хj		√k	√I	√k
knot <i>Calidris</i> canutus	xa		xa	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	xg	xf	√h	хi	√h		хj		√k	✓I	√k
dunlin <i>Calidris alpina</i> (passage and wintering)	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	√I	√k
redshank <i>Tringa</i> <i>totanus</i>	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	√I	√k
black-tailed godwit <i>Limosa</i> <i>limosa</i>	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	хf	хg	xf	√h	хi	√h		хj		√k	√I	√k

Name of Euro	pean s	site an	d desi	gnatio	n: Hur	nber E	stuary	SPA																			
EU Code: UK9	00611	.1																									
Distance to NS	SIP: 6	.3km																									
European site features												Likely	effect	s of N	ISIP												
Effect	sı hab	Loss of turbanc upporti itats w ignated	e of ng ithin	m dist	Loss on the contraction of the c	cal	Emis	sion of	dust	of	lental r waterb polluta		of	reased pollut n sedir load	ion	di	Nois sturb	se ance	di	Visu sturb		1	mission ated flu to aii	ie gas	In c	combina effects	
Eurasian oystercatcher <i>Haematopus</i> <i>ostralegus</i>	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	√I	√k
grey plover Pluvialis squatarola	ха		ха	√b		√b	√c		√c	√d	√d	√d	√e		√e	xf	хg	xf	√h	хi	√h		хj		√k	✓I	√k

Evidence supporting conclusions:

- **a.** The Proposed Scheme is located approximately 6.4 km from the European Site. There would therefore no loss of habitats within any European Site arising from construction or decommissioning of the Proposed Scheme (Paragraph 3.5.2. of the HRA Report).
- **b.** The off-site Habitat Provision Area includes scrub and former arable farmland habitats that could potentially be of some limited value to wintering SPA bird species for foraging and roosting. The off-site Habitat Provision Area would not be subject to construction activities, rather the habitat present would be enhanced to deliver ecological mitigation and support the delivery of Biodiversity Net Gain. The Habitat Provision Area and surrounding farmland habitats plus the Carr Dyke watercourse may also be used on occasion by low numbers of wintering birds that are associated with the Humber Estuary SPA (see **Table 3.3** in the **HRA Report** (document reference 6.8.1)). As such, LSE are predicted to arise.
- c. Emissions of dust from construction activities could be relevant to ecological receptors up to 50 m from construction activities. A limited extent of Carr Dyke is located within 50m of the Woodyard as are limited extents of farmland habitats within and adjacent to the Habitat Provision Area. land within and adjacent to the Habitat Provision Area and Carr Dyke may form functionally-linked land that is used occasionally by some of the bird qualifying interests associated with Humber Estuary SPA (see **Table 3.3** and **paragraphs 3.5.5** to **3.5.10** in the **HRA Report** (document reference 6.8.1). As such, LSE are predicted to arise.
- d. As set out between paragraph 12.9.9 and 12.9.11 of Chapter 12 (Water Environment) in Volume 1 of the ES (document reference 6.1.12), in the absence of mitigation Carr Dyke may be at increased risk of pollution from accidental spillages of oils, hydrocarbons, and hazardous substances during construction, operation, and decommissioning. Paragraph 12.9.15 of Chapter 12 (Water Environment) also identifies that River Ouse, approximately 1.4 km downstream of option 1 of the Carbon Dioxide Delivery Terminal Compound, is at risk of such pollution events during construction. Paragraph 12.9.31 of Chapter 12 (Water Environment) also identifies Carr Dyke and River Ouse would be at increased risk of deterioration of water quality due to surface water runoff from the Proposed Scheme during operation, leading to deterioration of the habitats present. Carr Dyke and River Ouse may be used on occasion by wintering birds that are associated with Humber Estuary SPA. As such, LSE are predicted to arise.
- **e.** Increased sediment loading of the Carr Dyke during construction and decommissioning could lead to short term and temporary impacts on water quality and the plant communities it contains (see **paragraph 3.5.12** of the **HRA Report** (document reference 6.8.1)). Carr Dyke may be used on occasion by birds that are associated with Humber Estuary SPA and Ramsar. As such, LSE are predicted to arise.
- f. Noise and vibration from habitat creation and management activities in the Off-site Habitat Provision Area and habitats in and adjacent to the Habitat Provision Area could potentially disturb low numbers of SPA bird species, should any be present at the time that habitat creation activities occurred. It should be noted that the Off-site Habitat Provision Area is bisected by a footpath, and as such is already subject to a degree of regular disturbance from human activity such as dog-walking. As such it is unlikely to be regularly used by SPA bird species. In the event that low numbers of SPA bird species were displaced, there is extensive alternative habitat available in the local area that they could occupy instead. As such, any displacement of SPA bird species that did occur is not expected to materially affect their condition or ability to persist in the environment. The assessment of noise and vibration presented in the ES considered several Biodiversity Receptor locations, including within and adjacent to the Habitat Provision Area north of the Power Station Site. The locations of these are shown on Figure 7.2 of Chapter 7 (Noise and Vibration) of the ES (document reference 6.2.7.2). The results of the construction and operational noise modelling for Biodiversity Receptors are set out in Table 1 of Appendix 7.6 (Biodiversity Receptors) of Chapter 7 (Noise and Vibration) of the ES (document reference 6.3.7.6). Several Biodiversity Receptors (BR 2 BR6) are located to the north of Drax Power Station Site, within the Habitat Provision Area. The maximum predicted noise levels are 39 LAeq, T dB.

- Research collated to inform assessments of waterbird disturbance identifies that SPA bird species are unlikely to be displaced by noise levels under 55dB (see **Table 3.4** in the **HRA Report** (document reference 6.8.1). In light of the minimal noise impacts associated with construction and decommissioning, no LSE are predicted to arise.
- **g.** The maximum noise level at any Biodiversity Receptor considered to provide functionally linked habitat (Biodiversity Receptor 5) is 28 LAeq,T dB (see **Appendix 7.6** (**Biodiversity Receptors**) of **Chapter 7** (Noise and Vibration) of the ES (document reference 6.3.7.6)). Additional detail is presented in **paragraphs 3.6.6 to 3.6.7** of the **HRA Report** (document reference 6.8.1). Given the very low levels of noise that would arise from operation of the Carbon Capture Plant, no disturbance of any European Site qualifying interests is predicted to arise.
- h. Birds that form part of the Humber Estuary SPA population may occasionally also use habitats outside the SPA, potentially including Carr Dyke and farmland habitats within and adjacent to the Habitat Provision Area. SPA bird species may be discouraged from using areas close (within up to a maximum of 300 m, although most likely less) to construction activities in this area due to visual disturbance from plant and personnel. The potential for disturbance is considered to be limited to activities associated with construction and laydown in the Woodyard, in the north of the Power Station Site. Construction and decommissioning activities elsewhere are considered to have negligible potential to trigger visual disturbance due to absence of functionally-linked land or being located in areas which have limited intervisibility with functionally-linked land. As such, there are potential LSE to SPA bird qualifying feature arising from works in the Woodyard area (see **Table 3.5** in the **HRA Report** (document reference 6.8.1).
- i. Operational activities with potential to disturb qualifying interests of the Humber Estuary SPA include the presence of additional personnel within the Power Station site, potential requirements for operational lighting, and habitat management in the Habitat Provision Area and Off-Site Habitat Provision Area. These activities are considered to have very limited scope to lead to significant disturbance of European Site qualifying interests, due to being confined to within the Drax Power Station Site and/or due to being equivalent to ongoing agricultural and public recreation activities in the Habitat Provision Area and Off-Site habitat Provision Area. This is analysed in detail between **paragraphs 3.6.11 to 3.6.19** of the **HRA Report** (document reference 6.8.1). As such, no LSE are predicted to arise.
- j. Humber Estuary SPA qualifying interests are not considered to be sensitive to acid deposition impacts as per the Air Pollution Information System (APIS website). This is summarised in **Table 3.6** of the **HRA Report** (document reference 6.8.1), with additional analysis in Appendix 5 of the **HRA Report** (document reference 6.8.3.5). The air quality dispersion modelling results (see **Section 6.12** of **Chapter 2** (Air Quality) of Volume 1 of the ES (document reference 6.1.6) show that the PC from the Proposed Scheme in-combination with other emitting developments is ≤1% of the critical level for all European Sites for NOx, NH₃, and SO₂. The PC from the Proposed Scheme in-combination with other plans and projects is also below 1% of Critical Load for nitrogen deposition.
- k. In-combination effects during construction and decommissioning have been identified for a number of the other developments assessed. The permanent land take for the convertor station and the temporary effects of construction for the HVDC cable for Development 3 could lead to disturbance / loss of farmland and other functionally-linked habitat used by SPA bird species. Development 9 would involve the erection and subsequent operation of five wind turbines and is located approximately 1.9km west of the Proposed Scheme. Construction and operation of Development 9 could contribute to increased disturbance or displacement of SPA bird populations using functionally linked land, if these use habitats within the ZoI of Development 9. This is explored in more detail in **Table 3.12**, **3.13**, **and 3.16** of the **HRA Report** (document reference 6.8.1). Development 3 involves permanent land take within the ZoI of the Proposed Scheme for a Convertor Station. The development also involves the installation of a cable crossing of the River Ouse downstream of the Proposed Scheme under the River Ouse by Horizontal Directional Drilling (HDD) or similar. The cable may also be installed across smaller watercourses and other land by open-cut techniques. The cumulative assessment of effects on the Water Environment (see **Table 1** in **Appendix 18.5** (Cumulative Effects Assessment Matrix) of Volume 3 of the ES (document reference 6.3.18.5) identifies the potential for cumulative adverse effects, worsening the risk of water-borne pollution from the Proposed Scheme alone. This is explored in more detail in **Table 3.11** of the **HRA Report** (document reference 6.8.1). In addition, there is potential for in-combination visual disturbance impacts between Development 6 and the Proposed Scheme to be worse than those of either project alone. In-combination LSE are therefore also identified in relation to visual disturbance for the SPA bird qualifying interests of the Humber Estuary SPA (see **Table 3.13** of the **HRA Report** (document reference
- In-combination LSE have been identified for Development 3 and 12 during operation of the Proposed Scheme. The risk relates to increased potential for adverse cumulative effects in relation to increased sediment load and pollutants released by accidental spillage and leakage of oil, hydrocarbons and hazardous substances. These could impact the quality of the local drains and potentially the River Ouse (functionally-linked land that may be used on occasion by birds that could form part of Humber Estuary SPA populations). This could lead to increased impacts relative to operation of the Proposed Scheme alone (see **Table 3.17** of the **HRA Report** (document reference 6.8.1). As such, in-combination LSE are predicted to arise.

HRA Screening Matrix 10: Humber Estuary Ramsar

Name of European									<u> </u>																		
EU Code: UK00129	15		4031 <u>9</u>		· · · · · · · · · · · · · · · · · · ·	JOI ESC	y 1	<u>amsur</u>																			
Distance to NSIP:	6.3 k	(m												_													
European site												Lik	ely ef	fects	s of NS	SIP											
features <i>Effect</i>	dist	Loss d urban nabita	ce of	dist	or phy urband onally land		Emis	ssion of	dust	re wa	ccidenta leases aterborr ollutant	of ne	of	pollui	ment	dis	Noise sturbar		di	Visual sturbar		tre	nission eated i as to a	flue		ombina effects	
Stage of Development	С	0	D	С	0	D	С	0	D	C	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Dune systems and humid dune slacks	×a		×a	×c		Хс	×f		×f	×h	×h	×h	×k		×k								×r		×s	×t	×s
Estuarine waters	×a		×a	Хc		×c	×f		×f	×h	×h	×h	×k		×k								×r		×s	×t	×s
Intertidal mud and sand flats	×a		×a	×c		×c	×f		×f	×h	×h	×h	×k		×k								×r		×s	×t	×s
Saltmarshes	×a		×a	×c		Хc	×f		×f	×h	×h	×h	×k		×k								×r		×s	×t	×s
Coastal brackish/saline lagoons	×a		×a	×c		×c	×f		×f	×h	×h	×h	×k		×k								×r		×s	×t	×s
Grey seals (<i>Halichoerus</i> <i>grypus</i>)	×a		×a	×d		×c	×f		×f	×i	×i	×i	×k		×k	×m	×m	×m	×m	xm	×m		×r		Xs	×t	×s
Natterjack toad (<i>Bufo calamita</i>)	×b		×b	×b		×b	×b		×b	×b	×b	×b	×b		×b	×b	×b	×b	×b	×b	×b		×b		×b	×b	×b
Assemblages of international importance – 153,934 waterfowl (non-breeding season)	×a		×a	√e		√e	√g		√g	√j	√j	√j	√ I		√ I	×n	×o	×n	√p	×q	√p		×r		√u	√v	√u
Eurasian golden plover (<i>Pluvialis</i> <i>apricaria latifrons</i>)	×a		×a	√e		√e	√g		√g	√j	√j	√j	✓I		✓I	×n	×o	×n	√p	×q	√p		×r		√u	✓v	√u
Red knot (<i>Calidris</i> canutus islandica)	×a		×a	√e		√e	√g		√g	√j	√j	√j	✓I		√ I	×n	×o	×n	√p	×q	√p		×r		√u	√v	√u
Dunlin (<i>Caldris</i> <i>alpina alpina</i>)	×a		×a	√e		√e	√g		√g	√j	√j	√j	✓I		✓I	×n	×o	×n	√p	×q	√p		×r		√u	✓v	√u
Black-tailed godwit (<i>Limosa limosa</i> <i>islandica</i>)	×a		×a	√e		√e	√g		√g	√j	√j	√j	✓I		√ I	×n	×o	×n	√p	×q	√p		×r		√u	✓v	√u
Redshank (<i>Tringa</i> totanus brittanica)	×a		×a	√e		√e	√g		√g	√j	√j	√j	✓I		√I	×n	×o	×n	√p	×q	√p		×r		√u	√v	√u
Common shelduck (<i>Tadorna tadorna</i>)	×a		×a	√e		√e	√g		√g	√j	√j	√j	√I		✓I	×n	×o	×n	√p	×q	√ p		×r		√u	✓v	√u

Name of Europear	ı site	and	desig	nation:	Hum	ber Est	uary R	lamsar	-																
EU Code: UK00129	15																								
Distance to NSIP:	6.3	km																							
European site features		Likely effects of NSIP Loss or Loss or physical Emission of dust Accidental Increased risk Noise Visual Emissions of In combination																							
Effect		Loss or Loss or physical Emission of dust Accidental Increased risk of pollution habitats functionally linked land Emission of dust Accidental releases of waterborne pollutants load Increased risk of pollution disturbance disturbance disturbance disturbance disturbance disturbance disturbance gas to air																							
River lamprey (<i>Lampetra</i> <i>fluviatilis</i>)	×a		×a	×d		×d	×f		×f	√k	√k	√k	×k		×k	Xm	×m	×m	×m	×m	×m	×r	√w	√x	√w
Sea lamprey (Petromyzon marinus)	×a		×a	×d		×d	×f		×f	√k	√k	√k	×k		×k	×m	×m	×m	×m	×m	×m	×r	√w	√x	√w

- **a.** There would be no loss of habitats within any European Site arising from construction or decommissioning (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 3 of the ES (document reference 6.2.8.3)).
- **b.** The dune slacks at Saltfleetby-Theddlethorpe on the southern extremity of the Ramsar site are the most north-easterly breeding site in Great Britain of the natterjack toad *Bufo calamita* in the UK. This location is more than 30 km from the Proposed Scheme, and therefore outside the ZoI for all impact pathways arising during construction and operation, with no prospect for the Proposed Scheme to have any effect on the natterjack toad population. As such, no LSE are predicted to arise.
- c. None of the qualifying interest habitats occur within 50 m of the Site (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 3 of the ES (document reference 6.2.8.3). As such, no LSE are predicted to arise.
- **d.** There are no habitats suitable to support the qualifying interest species sea and river lamprey, and grey seal, within the Site (see **Table 3.3** in the **HRA Report** (document reference 6.8.1). As such, no LSE are predicted to arise.
- e. The off-site Habitat Provision Area includes scrub and former arable farmland habitats that could potentially be of some limited value to wintering Ramsar bird species for foraging and roosting. The off-site Habitat Provision Area would not be subject to construction activities, rather the habitat present would be enhanced to deliver ecological mitigation and support the delivery of Biodiversity Net Gain. The Habitat Provision Area and surrounding farmland habitats plus the Carr Dyke watercourse may also be used on occasion by low numbers of wintering birds that are associated with the Humber Estuary SPA (see **Table 3.3** in the **HRA Report** (document reference 6.8.1)). As such, LSE are predicted to arise.
- f. There are no Ramsar qualifying interest habitat types within 50 m of the Proposed Scheme and no habitat suitable for grey seal (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 2 of the ES (document reference 6.2.8.3)). No construction activities will take place within 50 m of functionally-linked habitat (the River Ouse) used by river and sea lamprey. There is therefore no potential for dust deposition onto functionally-linked SAC habitats. See **Table 3.5** of the **HRA Report** for additional analysis (document reference 6.8.1). As such, no LSE are predicted to arise.
- **g.** Emissions of dust from construction activities could be relevant to ecological receptors up to 50 m from construction activities. A limited extent of Carr Dyke is located within 50m of the Woodyard as are limited extents of farmland habitats within and adjacent to the Habitat Provision Area. land within and adjacent to the Habitat Provision Area and Carr Dyke may form functionally-linked land that is used occasionally by some of the bird qualifying interests associated with Humber Estuary SPA (see **Table 3.3** and **paragraphs 3.5.5** to **3.5.10** in the **HRA Report** (document reference 6.8.1). As such, LSE are predicted to arise.
- h. None of the qualifying interest habitats occur within the ZoI of water-borne pollutants, as set out in **Table 12.2** of **Chapter 12** (Water Environment) of Volume 1 of the ES (document reference 6.1.12). As such, no LSE are predicted to arise.
- i. Grey seal is unlikely to occur within the ZoI of water-borne pollutants, as they are unlikely to travel upstream along the River Ouse beyond the boundaries of the SAC. As set out in **Table 12.2** of **Chapter 12** (Water Environment) of Volume 1 of the ES (document reference 6.1.12), the SAC itself is considered to be outside the ZoI for impacts on the Water Environment. As such, no LSE are predicted to arise.
- j. As set out between paragraph 12.9.9 and 12.9.11 of Chapter 12 (Water Environment) in Volume 1 of the ES (document reference 6.1.12), in the absence of mitigation Carr Dyke may be at increased risk of pollution from accidental spillages of oils, hydrocarbons, and hazardous substances during construction, operation, and decommissioning. Paragraph 12.9.15 of Chapter 12 (Water Environment) also identifies that River Ouse, approximately 1.4 km downstream of the Carbon Dioxide Delivery Compound, is at risk of such pollution events during construction. Paragraph 12.9.31 of Chapter 12 (Water Environment) also identifies Carr Dyke and River Ouse would be at increased risk of deterioration of water quality due to surface water runoff from the Proposed Scheme during operation, leading to deterioration of the habitats present. Carr Dyke and River Ouse may be used on occasion by birds that are associated with Humber Estuary Ramsar. As such, LSE are predicted to arise.

- **k.** Sediment loading has been identified as a risk to water quality of the Carr Dyke during construction (see **paragraph 12.9.3 and 12.9.6** of **Chapter 12** (Water Environment) in Volume 1 of the ES (document reference 6.1.12). The River Ouse is not expected to be affected, due to the distance between the Proposed Scheme and the Ouse. River and sea lamprey are not expected to use the Carr Dyke due to the barrier posed by pumping station infrastructure (see **Table 3.4** in the **HRA Report** (document reference 6.8.1), and there are no qualifying interest habitats or potential for other qualifying interest species (grey seal) to be present. As such, no LSE are predicted.
- I. Increased sediment loading of the Carr Dyke during construction and decommissioning could lead to short term and temporary impacts on water quality and the plant communities it contains (see **paragraph 3.5.12** of the **HRA Report** (document reference 6.8.1)). Carr Dyke may be used on occasion by birds that are associated with Humber Estuary SPA and Ramsar. As such, LSE are predicted to arise.
- m. None of the qualifying interest habitats occur within the Site (see **Figure 8.3** of **Chapter 8** (Ecology) in Volume 3 of the ES (document reference 6.2.8.3). There are no habitats suitable to support the qualifying interest species (sea and river lamprey, and grey seal) in areas that could be subject to noise and vibration or visual disturbance. This is explored in more detail in **Table 3.4**, **Table 3.5**, and between **paragraphs 3.6.6 to 3.6.19** of the **HRA Report** (document reference 6.8.1). In light of this, no LSE are predicted in relation to noise and vibration or visual disturbance of SAC qualifying interests.
- n. Noise and vibration from habitat creation and management activities in the Off-site Habitat Provision Area and habitats in and adjacent to the Habitat Provision Area could potentially disturb low numbers of Ramsar bird species, should any be present at the time that habitat creation activities occurred. It should be noted that the Off-site Habitat Provision Area is bisected by a footpath, and as such is already subject to a degree of regular disturbance from human activity such as dog-walking. As such it is unlikely to be regularly used by Ramsar bird species. In the event that low numbers of Ramsar bird species were displaced, there is extensive alternative habitat available in the local area that they could occupy instead. As such, any displacement of Ramsar bird species that did occur is not expected to materially affect their condition or ability to persist in the environment. The assessment of noise and vibration presented in the ES considered several Biodiversity Receptor locations, including within and adjacent to the Habitat Provision Area north of the Power Station Site. The locations of these are shown on Figure 7.2 of Chapter 7 (Noise and Vibration) of the ES (document reference 6.2.7.2). The results of the construction and operational noise modelling for Biodiversity Receptors are set out in Table 1 of Appendix 7.6 (Biodiversity Receptors) of Chapter 7 (Noise and Vibration) of the ES (document reference 6.3.7.6). Several Biodiversity Receptors (BR 2 BR6) are located to the north of Drax Power Station Site, within the Habitat Provision Area. The maximum predicted noise levels are 39 LAeq,T dB. Research collated to inform assessments of waterbird disturbance identifies that SPA bird species are unlikely to be displaced by noise levels under 55dB (see Table 3.4 in the HRA Report (document reference 6.8.1). In light of the minimal noise impacts associated with construction and decommissioning, no LSE are predicted to arise.
- o. The maximum noise level at any Biodiversity Receptor considered to provide functionally linked habitat (Biodiversity Receptor 5) is 28 LAeq,T dB (see **Appendix 7.6** (**Biodiversity Receptors**) of **Chapter 7** (Noise and Vibration) of the ES (document reference 6.3.7.6)). Additional detail is presented in **paragraphs 3.6.6 to 3.6.7** of the **HRA Report** (document reference 6.8.1). Given the very low levels of noise that would arise from operation of the Carbon Capture Plant, no disturbance of any European Site qualifying interests is predicted to arise.
- p. Birds that form part of the Humber Estuary Ramsar population may occasionally also use habitats outside the Ramsar and close to the Proposed Scheme, potentially including Carr Dyke and farmland habitats within and adjacent to the Habitat Provision Area. Ramsar bird species may be discouraged from using areas close (within up to a maximum of 300 m, although most likely less) to construction activities in this area due to visual disturbance from plant and personnel. The potential for disturbance is considered to be limited to activities associated with construction and laydown in the Woodyard, in the north of the Power Station Site. Construction and decommissioning activities elsewhere are considered to have negligible potential to trigger visual disturbance due to absence of functionally-linked land or being located in areas which have limited intervisibility with functionally-linked land. As such, there are potential LSE to SPA bird qualifying feature arising from works in the Woodyard area (see **Table 3.5** in the **HRA Report** (document reference 6.8.1).
- q. Operational activities with potential to disturb qualifying interests of the Lower Derwent Valley SPA include the presence of additional personnel within the Power Station site, potential requirements for operational lighting, and habitat management in the Habitat Provision Area and Off-Site Habitat Provision Area. These activities are considered to have very limited scope to lead to significant disturbance of European Site qualifying interests, due to being confined to within the Drax Power Station Site and/or due to being equivalent to ongoing agricultural and public recreation activities in the Habitat Provision Area and Off-Site habitat Provision Area. This is analysed in detail between paragraphs 3.6.11 to 3.6.19 of the HRA Report (document reference 6.8.1). As such, no LSE are predicted to arise.
- r. Humber Estuary Ramsar qualifying interest habitats and species within the ZoI of air quality impacts (15 km radius around Main Stack) are not considered to be sensitive to acid deposition impacts as per the Air Pollution Information System (APIS website) information for the SAC and SPA. This is summarised in **Table 3.6** of the **HRA Report** (document reference 6.8.1), with additional analysis in Appendix 5 of the **HRA Report** (document reference 6.8.3.5). The air quality dispersion modelling results (see **Section 6.9** of **Chapter 2** (Air Quality) of Volume 1 of the ES (document reference 6.1.6) show that the PC from the Proposed Scheme is ≤1% of the critical level for all European Sites for NOx, NH₃, and SO₂, with no exceedance of the Critical Level with or without the Proposed Scheme. The PC from the Proposed Scheme is also below 1% of Critical Load for nitrogen deposition. As such, no LSE are predicted to arise.
- s. Qualifying interest habitats of the Ramsar do not occur within the ZoI of the Proposed Scheme during construction and decommissioning nor is there suitable habitat for grey seal present. As such, these qualifying interests are not predicted to be subject to any effects during this phase of the Proposed Scheme (see **Tables 3.8 3.17** in the **HRA Report** (document reference 6.8.1). The Proposed Scheme is considered *de minimis*, with no prospect of contributing to significant effects on the Ramsar that may arise from other Plans and Projects. As such, no in-combination LSE are predicted to arise.
- t. Humber Estuary Ramsar qualifying interests are not considered to be sensitive to acid deposition impacts as per the Air Pollution Information System (APIS website). This is summarised in **Table 3.6** of the **HRA Report** (document reference 6.8.1), with additional analysis in Appendix 5 of the **HRA Report** (document reference 6.8.3.5). The air quality dispersion modelling results (see **Section 6.12** of **Chapter 2** (Air Quality) of Volume 1 of the ES (document reference 6.1.6) show that the PC from the Proposed Scheme in-combination with other

- emitting developments is $\leq 1\%$ of the critical level for all European Sites for NOx, NH₃, and SO₂. The PC from the Proposed Scheme in-combination with other plans and projects is also below 1% of Critical Load for nitrogen deposition. Qualifying interest habitats of the Ramsar and grey seal do not occur within the ZoI of the Proposed Scheme for any other impact pathways during operation. As such, no in-combination LSE are predicted to arise.
- u. In-combination effects during construction and decommissioning have been identified for a number of the other developments assessed. The permanent land take for the convertor station and the temporary effects of construction for the HVDC cable for Development 3 could lead to disturbance / loss of farmland and other functionally-linked habitat used by Ramsar bird species. Development 9 would involve the erection and subsequent operation of five wind turbines and is located approximately 1.9km west of the Proposed Scheme. Construction and operation of Development 9 could contribute to increased disturbance or displacement of Ramsar bird populations using functionally linked land, if these use habitats within the ZoI of Development 9. This is explored in more detail in **Table 3.12, 3.13, and 3.16** of the **HRA Report** (document reference 6.8.1). Development 3 involves permanent land take within the ZoI of the Proposed Scheme for a Convertor Station. The development also involves the installation of a cable crossing of the River Ouse downstream of the Proposed Scheme under the River Ouse by Horizontal Directional Drilling (HDD) or similar. The cable may also be installed across smaller watercourses and other land by open-cut techniques. The cumulative assessment of effects on the Water Environment (see **Table 1** in **Appendix 18.5** (Cumulative Effects Assessment Matrix) of Volume 3 of the ES (document reference 6.3.18.5) identifies the potential for cumulative adverse effects, worsening the risk of water-borne pollution from the Proposed Scheme alone. This is explored in more detail in **Table 3.11** of the **HRA Report** (document reference 6.8.1). In addition, there is potential for in-combination visual disturbance impacts between Development 6 and the Proposed Scheme to be worse than those of either project alone. LSE are therefore also identified in relation to visual disturbance for the bird qualifying interests of the Humber Estuary Ramsar (see **Table 3.13** of the **HRA Report** (document reference 6.8.1).
- v. In-combination LSE have been identified for Development 3 and 12 during operation of the Proposed Scheme. The risk relates to increased potential for adverse cumulative effects in relation to increased sediment load and pollutants released by accidental spillage and leakage of oil, hydrocarbons and hazardous substances. These could impact the quality of the local drains and potentially the River Ouse (functionally-linked land that may be used on occasion by birds that could form part of Humber Estuary Ramsar populations). This could lead to increased impacts relative to operation of the Proposed Scheme alone (see **Table 3.17** of the **HRA Report** (document reference 6.8.1). As such, in-combination LSE are predicted to arise.
- w. In-combination LSE have been identified for Development 3 during construction and decommissioning of the Proposed Scheme. Development 3 involves permanent land take within the ZoI of the Proposed Scheme for a Convertor Station and temporary works for cable installation. The development involves the installation of a cable crossing of the River Ouse downstream of the Proposed Scheme under the River Ouse by Horizontal Directional Drilling (HDD) or similar. The cable may also be installed across smaller watercourses and other land by open-cut techniques. Installation of the cable could therefore lead to an increased risk of accidental release of water-borne pollutants within watercourses including the River Ouse, which is used by sea lamprey and river lamprey qualifying interests to migrate between the Humber Estuary and upstream spawning grounds including the River Derwent (see **Table 3.11** of the **HRA Report** (document reference 6.8.1) for further analysis). As such, in-combination LSE are predicted to arise.
- x. In-combination LSE have been identified for Development 3 and 12 during operation. The risk relates to increased potential for adverse cumulative effects in relation to increased pollutants released by accidental spillage and leakage of oil, hydrocarbons and hazardous substances. These could impact the quality of the local drains and potentially the River Ouse (functionally-linked land used by river lamprey and sea lamprey). This could lead to increased impacts relative to operation of the Proposed Scheme alone (see **Table 3.17** of the **HRA Report** (document reference 6.8.1). As such, in-combination LSE are predicted to arise.